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As with the PP
,
we first defie what we would like a CTMC

to be
,
and then figure out if we can construct it . . .
-

•Defy (continuousTime Markoo Chain) Let X be a countable
set (the state -space) . A X

- valued stochastic process
X = EXCH 'S tent is called aGMC if ft,s 30, and t KEN,
OE t , at z C .

.
.

Ctn at
,
and f xyxz .

. .

.
Kia
,
x
, y EXY

'

IPIX.lt-ist-y Htt) --#th --xn . . . . xltd-x.FR/xCtesI--ylXH--oI
Moreover

,
the chain is said to be homogeneous if the RHS is independent

of t , ie , IP[Xlt -ist- y l X Lt) = sit = Ps (x, y )

Befeeproceedingents.si) Does a CTMC exist ? Well
,
we already saw one! Checkthat

if Nlt) is a PP G)
,
then Nlt) is a CTMC on IN

.

In particular
,
Bla, y ) = eEH" t y >K, and Ooo .

G-⇒ !

2) We use the notation Pdx,y) to maintain
,

a similarity to the
notation for DTMCs , where we wrote Plaid for the
transition probabilities . Note though that Ps is not one
matrix but a fn of s , and that Ps t Ps ( unlike in aDTM)

3) As with PP
,
we will see 2 main ways to construct a CTU

i)
-

Analytic
"

- Via the ' transition semigroup
'

ii )
-

probabilistic
'

- Via an embedded discrete-time
'

jump chain
'



-Cttlcsviathetransitiensemigraep
Given the above defn of a CT MC, let PCH = { Pek , a.ye x

,

(where Pete, y ) E R [x Get)= y 1×6) -- a] t s, t > o)
-AswithDTMCs.suuhapmustsatisfyaasistagegnI.CChapman- Kolmogorov Eqns) t t ,S 30 , and ta,yGX,
we have Pets(x, y) = Ezex PEG,⇒ B Cz , y) , or compactly

Pets = Pt Ps
,
Po = I

• Moreover
,
let Itt) = {TuttBxex be - the distribution of Xlt) .

Then we have htt>0
,
ITGIT = IT lost PI

.pe/sroblemisthattheeisnopwticulwtst#
be used to determine Ps for any set (unlike in a
DTMC

,
where Pz =P and pen = P

"

t n EIN )
.

.

Instead we need to define P't in terms of an
'

infinitesimal
generator ' . We outline this first for some simple cases.

Eg-0oissaproiesslfirstcthpp.a.BY/efn,
we have

'

Petn, y) = PENAest --yl Nls) a] ftp.o
= e't¥

"

Hey>as
• On the other hand

,
recall we defied a PPG) via the eqns

IP [NHS) - Nlt) = I 3=78+064
,
PENHA-NH -07=1-78+069

and PENH - NCH > I ] = O ( S2)



Using this , we can write

IP [N (test y] = § PINCH-- a) PINKth) -- y INGta]
= 28PENH -- y-tf th-B) BINHey] -1064

• Let Tttlx) = IP [NHK x]
.

Then we can write

Tesla) - Theta) = Tt Cx- D 18 -Theta)
.
.

1St OG')

⇒ T¥T =#tGoi ) - Tt# t OG)

Taking limit S b O ,
we get the differential agus

ITICx) -- X (Tek-D -Ttt Ix)) the> l
,
IfG) = -7TH

,
Tok) :#pesos

• One way to solve these is to first solve for Te lo) as
"

died =!- Idt ⇒ ITeco) = e- at

eco)

. Next
, for tall . -- X e

't
- ATth )

,
we can write it as

e
't

date) + Ae
't
Tell) = Ige ( e

't Ith) ) =3
,

and Told -0

Solving we get Held = ate
't

.

Moreover
,

we can continue
this via induction to show IT tho) =

• the differential egns can be written concisely as dtTYdt=TIQ,
where QW=i; ? =/?o÷÷÷÷ .) . the system

has a unique solution Tela) = eh
"

if Tok) =Hq⇒
.



Ef - ( Flip - Flop chain) let Nlt) be the Poisson process, and define
Xlt) EE-1,13 as Xlt)=XCo) C- 1)Htt, Xlo) room E

- 1,13
.

Now Pell
,

l ) =P[ xtstt) - I 1×61=1 ]
= PINCH isaef-E.ee?t.M=e*fetIze*J(2)

Solving for Petit) , Petti) adf.tl , -11 , we get that- l l

P = { ( text I - e-Ht . ,

t feint He
-27T)

,

• Alternately ,
we can write fort , s > o , and It

-

- HI:
Heist-D= Felt) ( t -As) + Ith) as -1064
Ites Li) =Htt) ( 78) t ITH) (HD to (5)

As before we can compute (Teesta) -THD )Bad
Ttake limsbo to get IIE -

- II. On
,
where Q -

- f} ?,)
- T Tsolving this , we get IIe = to eat

, where one can

check via computing the e-values of Q that eats #IYII.FI/#bothcaseswmmagedtoderiePfby
- T - T Q and solowriting diff = Ho -

ng
the system

to get ITE = ITF Ptt) . Before formalizing this , we
see another example

,
which generalizes the above 2 .



Ey ( Uniforms. CTMC ) Let {Yn } new be a DTMC
on countable state -space X ,

with transition matrix K
,
and

let In} new be the arrival times of a PP (A) process
Nlt) of rate 7 .

Then the process Xlt)
= Ynet,

is called a uniform MC with Poisson clock NUI
and subordinate chain Yn

• Thus X kn) = Yn f nEIN
,
and X (t) = XIE) if

t ¢ {Tn}new .
Note also that Tn is not necessarily

a discontinuity pt of Xlt) , since Yn can equal Yai .
• Now we have Pe =Eo @¥n) . kn

n
-

• Note also that tf t
,
870

,
we have Hy EX

Ites (8) =78€×TtG4khg)) t#s) titty) to (5)
⇒ DIII = lighted. = 7 ( K - I) Tt

solving we get ITE = To ett K-I! where we

have eatKH = e-
'

takin = Pt
Ftrymdfrma.ge/kseideas...



Defy ( Stochastic Semigroup) { Pe } too is said to be
a stochastic semigroup on X if t s,t30
( i) Pt is stochastic matrix

, i.e .

,
E Rta

, y) =L the EX
yEX

fi) Po = I
,
Ciii) Pees = Pt PsV-s.to#hastisemigrupPiscaedstmdwdifitiscontinmt

the origin , ie , lim Pg = Po = I (pointwise convergence ? )
S-so

Then we have the following2 properties -

i) Pt is continuous
,
i.e

.

, tiny Pets '- Pe htt 30
D

ti) TxEX
,7-Qkih-QHEfizot-IEYQGD.fi; Bg

The proof is purely analytical (see Bre'maid , Ch8, Than 2.1 , and
not crucial for our purposes, so we take it as a fact .

DefiieimaGmaa)FuaCTMCXt
on X with stochastic semigroup Pe

,
its infinitesimal

generator is given by Q = fin Pet ( : - Post)do

go.thegeneratorQisthuslhedevioatioeofpt.IO
and can be found from Pt . On the other hand

,
Pt can

'

usually also be found from Q ( as Pt -- et
Q) in most cases

.

. .



Egl Birth -Death Process) A continuous-time birth -death process Xlt)
is a CTMC taking values in IN st . It , 870 and i C- IN
IP f X Ltt s ) = itil GH i] = Ii Stol5) PIX#A-it fixate FeiStok)
IP [Xttts) -- i HH=D = I - Kitai) S t 064
and all other transitions have probability 062)
Given {Xi

,Misia and Io, intuitively we would say Xlt) has a

generator Qli
,
itD= Xi

,
Qli
,
i-DaeiHeinz

,

Qli
, j)

-

-O ti Et lit, i , in }

However
,
if Xi,Mila as i Ma

,
such a limit may not exist . We

neItgwihshae

Defy- Consider semigroup Pt with generator A- -- slim BII
• Pt is stable iff-QKRHQH-lgiggl-P.sk#safxEx
• Pt is conservative iff f-Qbs Qld) -- §*Qlx, y) the EX
-

• Note that for any S , by defn of the stock semigroup
the

,EI Pstn , y) = I ⇒ l-pg.tn#=Ey*gPskyyI
Thus if dino EyexPsh,y) = Ey# firs Psh, yl ,then, P
is stable and conservative

.

We assume henceforth
that Q is stable and conservative - note though that
checking this for a GMC ( for example, abirth-death chain) is non-trivial



kolmogorovSDifferentialEguat.ie
• Given a standard stochastic semigroup Pt

,
we can writehtt,s

P¥jf = Pt Pj = PE Pe

Assuming the limit 810 exists ,
we get two systems of diffegs

i) IRI = Pt Q ( Forward diff ) ii) ddi = Q Pt (Backward diff)df system system

In more detail
,
t x

, y EX , we have the diff egns
Forgot, i) dfeffid-fzxpelx.HQG.gl = - Pek,y) Q1tz.EE#QHyIBadEgnIdiildPIeId--f*Qk.zIPtlz, g) = - QHR.la?yItExQtszIPeGD
-

• If X is finite ,then subject to PG) -- I
,

the above

systems have a sdn Ptt) = etQ=€itIQ÷
- For verifying this , the main thing that one must check is

that etQ is defined .

For this we have the following -
•Lenya - For any matrix A with Ali

,DEIR , and

for all t >o, the sanies En th Ahs : converges component-
wise lie

, for all i,jE In5)
PI- Let Andi ,D= (Ahli

, ; ,
and defines = n.gg/Ailisill . Check

via induction that IAhli ,its Ak n't' . Hence ti, i C-Cni?
we have Andi , it t4k! E 's Cndttyn : ⇒ Le Atli; Sen ig



• What about when X is countable ? This gets more
technical

,
so we state the main results without proof

The . Let Pt
'

be a standard stochastic semigroup ,

i) If Pe is stable and conservative
,
then date = Q Pt-

( i.e.
,
we cantake limits to get Kolmogorov 's backward system)

ii) If in addition §× PtGsk) Q Inkat KEX , then also
date = Pt Q (ie. , Kolmogorov's forward system is satisfied)

Iii) Finally let It denote the distribution of X# at any t > o .

Assuming the above conditions
,
and also

,
that f t so

we have Exex QGd TtGd sa .

Then we have

III = Ttt Q , ietxex, dig = -That

QG.lt#xTttdQlyD.rize,essumigQx)LAmdQD=EytQy
( ie
,
Q is stable and conservative )

,
we can solve the backward

earns to obtain Pt = eat
.
Thus Q is asense completely

defies the CTMC .

• Q (x
,y ) is sometimes referred to as the transition rate from ktoy

(for a * y) , as it represents the rate of
'

probability
' flowing from. x

to y l i.e
,

Ps laid = Ok,y) S +064) .. This canbe represented by a
Qaytransition rate diagram =

- i
^

ayy
- - -



DICHreducibility) - A CTMC Xlt with generator Q is
irreducible if Pt Ggg) 70 for any t> 0, and all myEX=

- In fact
, for any sgy EX , Petn, y) > O ft, or Pth, yko tf t

• Defn (stationary Distribution) A stochastic recta IT
( ie
,

with (a) 70 txtX and ExexitHH) is a stationary distr
of a CT MC (Q,Pe) if ITT Pe -- ITT f t Zo

.

Moreover if Q is stable and conservative , then IT
satisfieslheglobalbalanceegntt.TO#
Given the above defn

,
we can state a convergence theorem for CTMCS

Them( CTMC Convergence Theorem ) For an irreducible CT MC (Pt
,
Q)

i) If stationary dist IT exists , then it is unique , and moreover
Rita

,y) ITLy) t x
,y EX

2) If no stationary IT exists, then Pt Ca,y) ¥0 H x
,yEX

pf#th(GIS
,

Chlo
,

Them21) For any k> O, define skeletonDTMC Yn =X(n k!
Note Yn is irreducible

,
positive recurrent ( : ' XH irreducible ad Petn,y Ily)) and

aperiodic t - ' Pek,a) 70) ⇒ Yn has unique stationary dist IT, ad Pnkln, y)-study)
Now consider k,,kzE④ : since kin -- Kan' infinitely often ⇒ Itch

,5-Itchy
.

For
any other

t.EE/wecancompletetheproofriacontinuityargumats
The ( CTML ErgodicTheorem) - For irreducible CTMC XCH with stationary
distr IT

,

we have finna AxesDds = IfbbTbd as.V-fs.tt#flfixHKaPf-Sketch
- Similar to DTMC (via renewal cycles)



CTMCsoiaEmbeddedcha.IT
• An alternate approach to constructing CTMCs is
by constructing them from DTMCs .

Thee are two

ways to do this :

i) the Jump Chain - this exists for any CTM C
ii) The Uniform ized Chain - This exists when §¥p×QGu) sa
-

Thetumpchain
• We construct a process Xlt) on some countable X

,
fort EIR+

as follows -

- Start with aDTMC new on X
,

with Yong
and transition prob matrix A ={ Aln

,yl} . We assume
that A- (x

,
a) = O TxEX : in other words

,
.

Yn has
no self - loops

,
but always

't
jumps

'
to aneo state

.

- Next suppose we are given a sequence {Eh} new

of iid Exp 11) res (int of yn) , and a function
{ this ; KEX} of inverse holding tines for each
state

. Essentially , whenever Xlt) reaches
a state xEX

,
we want it to stay there for

time W - Exp(864) before jumping to saeytx .



- We now construct the chain as follows .
- Let Xco) = Yo ~ IT o and To = O

.

- Define Wo = Eo 18k Yo ) ~ Exp (81%1)
. Set IT = To two

,
and XLT) = Ya

. Subsequently for any K Z 1
,
we define

Wrs = EHPfk) , The ,
=Tnt Wn

,
X (Tna) =Yun

- Define Ta = Linna Tk .
Then we can write

Xlt) = Eo Yu Hs teen.tn.B ft Elo,Ta)
• It is not hard to check that the above process is indeed
Markarian

..
Moreover

,
we could also allow 764=0

to model absorbing states, or Aca) =L to model
States visited instantaneously . For the following , however
we restrict to 7h) EG

,
a) txEX

.

• One potential problem still is that I could be finite
caxlhencexcttisonlydefiedontc-fo.TK#

• Def n - The process XG.) is said to be explosive
ftp.ftas a] > O for some X 6) = x

,
and regular

if Pa Ea s a] = O for all. XH⇒cEX .

- As an example , consider a birth process with 864=5



The - For any xEX , given new andHH} as above
PETA s a] =P. [Eth, < a]

In other words
,
X ft) is regular iff §HYn5' = a as .

Moreover
,
this holds whenever one of the following hold

DX is finite , ii) Ha) EP <a txtX ,
iii) Given A CX the transient states of Yn ,

we have

Tx EX
,

1Pa [Yn EA th C- IN ] = O

wefirsfneedatyofExpmtiaropropositioe-lf.EEn } are independent Exponential to set

Ei ~ Exp(Xi) t it IN . Then

E.En s a a.s . iff §,
'
s a

#

Pfoftheaa - By construction, we haveTa =€µEhMr. n)

This is asum of indep Exponential ros , and by the
above prop

"

,
PETACal {yes] = {to if E W

- '

sa

if EtGn5
'

- a

thus Pfa C -I = Pa [ENKI's a]
Now we want to verify the sufficient conditions



For 45
,
note that X finite means THE ka-

tf x IX.Thus its enough to verify Cii)
- For Lii)

,
we have §8(Yn5 ' Z En r

"

= a

- For ( iii)
,
suppose lP[ Yn C- A th] = O implies that

3- some og E XIA sat
.

x is hit infinitely often .

Suppose Ynj=x for some set nj , JEE 54 . - - 3. Then

E.in
" -3 Em? not

"
= few?Geo) =- ing

•Ass#rejmDMCtmitiaUxAd
holding times { 8GBaex which are non-explosive

Proposition tf ?, y EX , t70, we have
I? La

, y) -- e-Matt Huey,t.SN/e-rHsfzF.Ak.zIPe.sk-isDdsPf-Ptlx,yl--lPfXltI=ylxCokx]
= lpfxltty

,
Wo > tlxlot-aftlpfxttt-ywo.EE/xGtD

Moreover by construction
,
we have

IPLXLH =y , Wo> tlxlotx] = e-Na't Hey⇒a
ad IPIXLH -

- y , Wo Stl Xlol = x] = ¥
,
alpfxttty, Yi -- z,woftlxlokaf-E.tfe-rmsrkl.tl#tPe.sGidts



• Now given the expression for Pt logy) , we get the following
i) firn Pt (x,g) = Hex yes ⇒ fig Pe = I ⇒Pt is standard

ii) Ptlx
,y) = e-

th⇒Chazz tfMase ""h¥aA¥R Adda]
( substituting u = t - s)

⇒ dPdt¥y) = -Hal Pt Ggg) + e-N''t Malena't AGAPE. Hid)
= Has (- Pete,y) t ¥

.

AGH Petz,yl )
⇒ tape = Q Pe Q G. z ) = - Nas iz --x

,
where { PHA Gsztizt'

(Kolmogorov's Bachand GD
= Dp (A - I)
→

diag (rt =L" go,)
Moreover Q (x

,
a) = - NH safe

,
and ¥

,
.PH#.GgzI=Nod---Qk.d

Thus
,
Q is stable and conservative

.

iii) the formula for Pt Ca, y) is based on conditioning onthe first jump
(and hence yields the backward DE)

.

To get the forward DE,
we need to audition on the last jump - for this to exist, we
need the system to not be explosive

.

Wow conditioning on the last jump,
we get Riggs = e-"" t#⇒ + MEIER" RHQkid) ds
Differentiate to derive the Kolmogorov forward equation



iv) Given a ⑤table + conservative) infinitesimal generate Q , we can
derive the jump chain parameters (A , r) as
Nx) = - Qlxpd 'fatX

,
Atx

,y)
-

- QGgyyppj-V.gg EX

similarly given a sample path XCH of a CTMC, we can
obtain the subordinate jumpDTML by tracking the sequence of
unique States of Xlt) (so Yo --Xlol, Ti -- int Et>olXttHXloB,
Y, = Xi

, ,
Tz = inf Et >Til XCHFXCTB

,
Ye Xia

,
- . .)

.

Moreover
,

the holding times Wi --Ti -Ti -i can be used to give the underlying
driving clock process as Ei = Wi . Xxii't

Thelhiformizedchain
• Earlier we saw a uniform Xlt) = Ynet

,
where Yn is aDTMC

with transition matrix K (where KGgal can be 30
,
ie
,
self

loops are allowed)
,
and NHI v PPG) ..

The associated
stochastic semi group is Pt In

,y) = Eo Hln
, y)

• We can differentiate to check that
dR¥zyl = - XE

't Hex.gs + E tht -in
'

e'-*kn Gy )

setting to, we get d Poky#t = Dkk,y) - Henry 3) ⇒Q⇒ (K- I)
• To determine the jump chain (A ,

8) associated with the
Uniform CTMC (K, X) , we have Any

= - Qk
,
a) = Ill - Khal)

,
Al;D

and Algy) = Qff= ,Efy¥÷, .

Note that Ah
,yt-PIYntr-ykn.sc,Keita



• Note that -044=74-Kk,dk7⇒f¥x¥dk7G .

Moreover
,

given any Q st saeiypfofynka , we can obtain a uniform
MC with 7=§gyzfQk,all , kkpt-HQK.nl/x,Kla,yI=Qk.g)/7
Thus CTMC Q is uniformizableiffIIBC-Qh.DK a .

-

Examplesi) Poisson process PPA) = 04g) =D Hey -- a-B - THEY --se}
i
,

A '

Koo'¥⑤
i Nos⇒ 841=7 865-7 ! NCE) appeal

rate diagram f jump chain hnifeemiged chain

µ101 1001
ii) Generalized flip-flop - Q

,

' tu
.

,
oh

⑥ I ⑥ i 00*01
I Hotta Notte ,o

l D= max (Ma
,Mio)rate diagram I jump chain ! uniformizeal chain

iii) Generalized birth - deaf process - Qliitl) -- Ii
,
Q Iii - 1) =µi

rate diagram
. . . . . .

is
jump, a.

. . . ui€ n . .

I-RHA try, think I- ra

unionized chain Q÷;¥Q A""" A
""%

t.s.ysh.i.in
0% ② " -i . . .

assume



Finally we want to understand stationary distributions .

• Recall : Given CT MC (Pt
,
Q)
,
IT is a stationary distr

i) ITT Pt = IT T f t z o
- iff

ii) (Assuming Q is stable, conservative) ITTQ = 0
The GMC is ergodic if it is irreducible , and TH>Ofa some xEX
-

We now want to relate this to the jump chain ( A
,
r) and

uniform chain ( K
,
X) .

Recall Qi = Don (A - I) for the jump chain , Q
"

=D( K -E) for
the uniformize chain . Thus the stationary distr satisfies

• Uniformizedc.la
ITT XK - I) = O ⇒ ITT k = IT T

In other wards
, stationary dist of GMC Q

"

= stationary dist of DTMCK
Moreover CTMCXIH with generator Q is ergodic⇐ Xlt) is
uniformigable with uniform chain (7,K) ,and K is ergodic
.

Jumpchain-ITTD.LA-I) -- O ⇒ THNX =¥TG)Nyt Alypdttx
Moreover

,

the chain is ergodic if I sdn IT St ETCH s -
xEX



stationaryD.is/-r-Cakulatia&Examples-
To summarize the formulations of CTMCs -
Generator Jump Chain Uniformize chain#

• Qfmy)=fi%PGyYg - Holding rates - NH , KEX .@item) rate - A

subordinateDTMC - A subordinateDirk - K

QGgx)=-y¥QhD< A - AGH-04 "EX
. Q= > (K - I)

i:÷¥: ÷÷÷÷÷÷÷÷÷.to:¥÷:*:*:• ITEIITIPe.tt#T=tTtTQi)Xfinile,iiJsuPlQhidlK.ITLxS=EITCy7Hype)ii) A is ergodic y
• ITTQ :O ⇐ ITTR.IITT.tbggk-yqztldtlytttg.nl lie

. ,ITTK=tTT )
-

Ef -(General Birth -Death Chain) X -_ No
,
instate

i new arrival after time E×pGi) , departure after fire Explicit
rate diagram To Xi Ai -i ai

→ → → →
Quid -- fi: :3 ⇒.

n①E② . . .ei n . .
Oi ow

l Hrh)

jump chain → →

Hibernia.
" - 'Hrurxi n . .

I-H I- i

uniformize chain Qnj!A'
"

Attak a fgni
2- siuphitnika

⑥ ① ② . - -t n . .



o.Assum.mg/hishasastatiaarydistntT,wecansduefoitin3u
i) Using the rate matrix

- IT stationary if ⇐ITH =L and ITTQ

⇒ 4TH TH - i -Y?n÷ o . .) -- o ⇒ Ilona = Thai
,

and ti >I

⑦ itfhi) Thi) -- Ji -itLi - 1) thinTfa)

Thus IT2)ha --HuaiTH - Totti -- Iit lil PIG --Anhalt k) - laTHINGI

Now by induction
,
we can show ITCilmi =ITEM i t i 3 t.pe
-Let do =L

,
d x -- Daifu. ⇒ ITCH = ITlol

. @od . . . . Aa) the No

thus ITCH = dodi.z.IE Baz , where partition fnlie, normalisation) 2- = FEB,
iilusingthejumpchain-ITHHxt-fy.IT/y)HylAlgxlVx3#

⇒ IT lol Xo -- M, ITH) , µ.IT/i)=Xi-itTli-Dthi*tTlitDVi3 I

Nowwesoloeasbe/onetogetITH=Btz,Z=§Bc=£I÷#
iii) Usingthe uniform chain - X Z niaxo (Mini) (assume La)

Moreover ITH Mah = Th -DH-it ⇒ ITCH =D
.This a.) IT lol

(this follows from the balance egus for DTM C K - Note also k is reversible)
Again we get ITGet ¥1 = t.it#,Z=EfIIai)
-

• Thus in all cases we get ITH = BIZ
.

Be l¥÷i
,
EP.

For this to be defined
.

we need Zen ⇒ /It¥t,÷tj#④



• Finally to guarantee thatITexists, we need ④ t non-explosiveness of
the MC

.
We can ensure this in two ways

i) step Gitai)a lie
, uniformiz able chain) ,

or

ii) The jump chain DTMCA is positive recurrent : for this, we can check
balance 4ns as above to get the cordon

¥t¥¥¥÷¥⇒¥¥
This has many special cases
i) Xi = 7

,
Mi =µ Hsiao fi MINH queue

⑥T.tn#nIO--;letp--In--SZ.?pisaifffc1,tTLi)--C-p)pi
ii) Xi -- X

, Mi
-

- (ink)µ ti H - MlMlk queue

ooo÷o .

.
.
. .

z÷E÷÷t÷⇐ a .

. ÷ ,
Tila) =f÷

.

ifask, ITH
' Em

.

. Hh)
""

iii) Xi -- X Hsien, Mi -- inHsieh} f-E) MIMI klk queue

② . . . on
2- = sate. k , ITH men

iv) Xi -- X , Mi -- im Hsi >o} 6=74) MIM la queue

⑦ ③ . . .
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Reversibility
-

Birth - death chains are a special case of reversible CTMCs .

To define these , consider any T20 , and CTMc XCH .

Then
the time reversed process ICH = X LT- H is a CTMcon

[0
,
T] with semigroup F satisfying f x, y EX , the
detailed balance egn This Pln,y)

-

- T ly) Bly ,
n)

.

To avoid

dependence on # we extend XLH to negative time by
defining {X C-Hit 303 as a CTMC with semigroupF .
I

Thmke¥mad - Let XLH be a regular
DTMC with generator Q , and consider any dist IT.
Let 05 be defined such that IT a) Qln,yl -- Tty) QTy.nl
tx

,y EX ,
and QT! = - ¥+056,y) . If 051%4=0*4

Tx EX
, then IT is the stationary distr of Q , and
I generates the revere -the process ICH

.

FproofissimiwtUDTMCcase.MG
OF = On

,
then XCH is reversible lie , XLH ICHI

• Corer : A stationary birth -death process is reversible .

Pf. Recall That = ¥ . ¥ . ¥ . . .
Thus

-

for any 231,
we have IT a) HEITIx - i) 7×-1

,
and thus its reversible

.



• A more surprising and useful consequence of reversibility occurs

when we consider birth- death chains where 7. = 7¥70
,

i.e
.

,
all the birth rates are the same

.
This can be

interpreted as saying that the birthstone
process , independent of the state .

Assume also that the
chain is ergodic , ie , Ei! La (from tox)

ThmLBuvkesthml-Letxttlbeabirth-deathpro.es#
with birth - rate 7.⇒ t k30 and let Als ;D and

I

Dls
,
it denote the number of births lie, arrivals)

and deaths lie
.

. departures) in any interval Cst) .

Then

i) ft
,
{ DG.tl ,set31 Xlt) I {Alt, a] , u>t}

ii) The departure process is PPG)

Pfe - By reversibility , Xlt) E XL- t) .

Also the upward
jumps in Xlt) lie , arrivals) form a PP (7)

,

and are equal
in dish to the upward jumps in XL-t) , which correspond

Tais
. If III.IE.! .it?IIxusxhtfDepatuesinxai=arriabinxttiI::i:::sfor any costLw .

These however are
¥-0 a:-Odepartures Dfw , -Et te Xt- t) .Thus •-o •¥-0 !.-⑥

f i
past departures I Xlt) -#

Bd
t



• This now allows us to build complex networks of queues !

Egg(Tandem Queues) - 2 MIMI 1 queues is series

X-D "
→I X = IN, No

- Suppose find, c l ⇒ Xlt) re MIM 11
, finalPlatts ⇒I =p?H -ed

- By Burke 's Them
,
departures from L -

- arrivals from 2 - PPA)
Now if pz = feast ,

then Xslt) - MIM 11
, finapkdtt-I-pi.hr)

- Claim - Stationary list of (x ,xD = IT taped = ftp.M-pdlta)

Pf - Kelly's Lemma ! Check IT kind QQ.at , ly,yd) = Ily . QKy.y.tk. all
- Note - this does not mean X.HI XIA ! Rather

,

what it says is
that they are independent under the stationary dist IT.
Such a distribution is said to be product form .

Eye (Queue with Feedback) - Suppose departures fan an MlMll queue
returns w

. p. P . pp ftP
→to DO

Suppose Xlt) converges to a stationary dish .

M

Then the ' steady-state ' rate of arrivals A must obey A = At PA⇒ A -

- Idp
Naa assume p=¥p,Ll . Intuitively ,

IT (a) = ( I -p)p
" Fx> 0

Again this is true - checkby verifying reversibility !


