Continuous Time Markov Chains

As with the PP, we first define what we would like a CTMC to be, and then figure out if we can construct it...

- Defn (Continuous Time Markov Chain) Let X be a com table set (the state-space). A X-valued stochastic process

$0 \leqslant t_{1}<t_{2}<\ldots<t_{k}<t$, and $\forall x_{1}, x_{2}, \ldots, x_{k}, x, y \in X^{k+2}$,

$$
\mathbb{P}\left[X(t+s)=y\left(X(t)=x_{1} X\left(t_{n}\right)=x_{2}, \ldots X\left(t_{1}\right)=x_{1}\right]=\mathbb{P}[X(t+s)=y) X(t)=x\right]
$$

Moreover, the chain is said to behonogen eons if the RHS is independent of t, ie, $\mathbb{P}[X(t+s)=y \mid X(t)=x]=P_{s}(x, y)$
Before proceeding, some comments:

1) Does a CTMC exist? Well, we already saw one! Check that if $N(t)$ is a $P P(\lambda)$, then $N(t)$ is a CTMC on \mathbb{N}. In particular, $P_{s}(x, y)=\frac{e^{-\lambda_{s}\left(\lambda_{s} y^{y-x}\right.}}{(y-x)!} \forall y \geqslant x$, and $O_{0 \omega}$.
2) We use the notation $P_{s}(x, y)$ to maintain a similarity to the notation for $D T M C s$, where we wore $P(x, y)$ for the transition probabilities. Note though that P_{s} is not one matrix but a fro of S, and that $P_{S} \neq P^{S}$ (unlike in a.DTHC)
3) As with PP, we will see 2 a aim ways to construct a CTMC
i) Analytic - Via the 'transition semigroup'
ii)'Probabilistic' - Via an embedded discrete -time 'jum-pchain'

CTMCs via the Transition Senigroup
Given the above def of a CTMC, let $P(t)=\left\{P_{t}(a, y)\right\} z, z, y \in x$, (where $\left.P_{t}(x, y) \triangleq \mathbb{P}[X(s+t)=y \mid X(s)=x] \quad \forall s, t \geqslant 0\right)$
As with DTMCs, such a P must satisfy corsistang equs: - (Chapman-Kolmgorov Eqns) $\forall t, s \geqslant 0$, and $\forall x, y \in x$, we have $P_{t+s}(x, y)=\sum_{z \in x} P_{t}(x, z) P_{s}(z, y)$, or compactly

$$
P_{t+S}=P_{t} P_{S}, P_{0}=I
$$

- Moreover, let $\pi(t)=\left\{\pi_{x}(t)\right\}_{x \in x}$ be the distribution of $X(t)$. Then we have $\forall t \geqslant 0, \pi(t)^{\top}=\pi(0)^{\top} P_{t}$
The problem is that there is no particular t st P_{E} can be used to determine P_{s} for any $s \neq t$ (unlike in a DTMC, where $P_{1}=P$ and $\left.P_{n}=P^{n} \forall n \in \mathbb{N}\right)$. Instead we need to define P_{t} in terms of an 'infinitesimal generator'. We outline this first for some simple cases.
Eg- (Poisson Process) First consider $N(t) \sim P P(\lambda)$. By difn, we have $P_{t}(x, y)=\mathbb{P}[N(t+s)=y \mid N(s)=x] \quad \forall t, s \geqslant 0$

$$
=\frac{e^{-\lambda t}(\lambda t) y-x}{(y-x)!} \mathbb{I}_{\{y \geqslant x\}}
$$

- On the other hand, recall we defined a $\operatorname{PP}(\lambda)$ via the equs $\mathbb{P}[N(t+\delta)-N(t)=1]=\lambda \delta+O\left(\delta^{2}\right), \mathbb{P}[N(t+\delta)-N(t)=0]=1-\lambda \delta+0\left(\delta^{2}\right)$ and $\mathbb{P}[N(t+\delta)-N(t)>1]=O\left(\delta^{2}\right)$

Using this, we can write

$$
\begin{aligned}
\mathbb{P}[N(t+\delta)=y] & =\sum_{x} \mathbb{P}[N(t)=x] \mathbb{P}[N(t+h)=y \mid N(t)=x] \\
& =\lambda \delta \mathbb{P}[N(t)=y-1]+(1-\lambda \delta) \mathbb{P}[N(t)=y]+O\left(\delta^{2}\right)
\end{aligned}
$$

Let $\Pi_{t}(x)=\mathbb{P}[N(t)=x]$. Then we can write

$$
\begin{aligned}
& \pi_{t+\delta}(x)-\pi_{t}(x)=\pi_{t}(x-1) \lambda \delta-\pi_{t}(x) \lambda \delta+O\left(\delta^{2}\right) \\
& \Rightarrow \frac{\Pi_{t+\delta}(x)-\pi_{t}(x)}{\delta}=\lambda\left(\pi_{t}(x-1)-\pi_{t}(x)\right)+O(\delta)
\end{aligned}
$$

Taking limit $\delta \searrow 0$, we get the differential equs

$$
\pi_{t}^{\prime}(x)=\lambda\left(\pi_{t}(x-1)-\pi_{t}(x)\right) \quad \forall x \geqslant 1, \pi_{t}^{\prime}(0)=-\lambda \pi_{t}(0), \Pi_{0}(x)=\|_{\{x=0\}}
$$

- One way to solve these is to first sole for $\pi_{t}(0)$ as

$$
\int_{1}^{\pi_{0}(t)} \frac{d \pi_{t}(0)}{\pi_{t}(0)}=\int_{0}^{t}-\lambda d t \Rightarrow \pi_{t}(0)=e^{-\lambda t}
$$

- $N_{\text {ext }}$, for $\frac{d \pi_{t}(1)}{d t}=\lambda e^{-\lambda t}-\lambda \pi_{t}(1)$, we can write it as

$$
e^{\lambda t} \frac{d \pi_{t}(1)}{d t}+\lambda e^{\lambda t} \pi_{t}(1)=\frac{d}{d t}\left(e^{\lambda t} \pi_{t}(1)\right)=\lambda, \text { and } \Pi_{0}(1)=0
$$

Solving we get $\Pi_{t}(1)=\lambda t e^{-\lambda t}$. Moveover, we can continue this via induction to show $\pi_{t}(x)=\frac{e^{-\lambda t}(\lambda t)^{x}}{x!}$

- The differential equs can be written concisely as $d \pi t / d t=\Pi_{t}^{\top} Q$, where $Q(x, y)=\left\{\begin{array}{ccc}\lambda & ; y=\lambda+1 \\ -\lambda & y=x \\ 0 & y & 0,\end{array}=\left(\begin{array}{cccc}-\lambda & - & 0 & \cdots \\ 0 & -\lambda \lambda & \cdots \\ \vdots & -\lambda & \lambda\end{array}\right)\right.$. The system has a unique solution $\pi_{f}(x)=\frac{e^{-\lambda t}(\lambda t)^{x}}{x!}$ if $\Pi_{0}(t)=11_{\{x-0)}$.

Eg. (Flip- Flop chain) Let $N(t)$ be the Poisson process, and define $X(t) \in\{-1,1\}$ as $X(t)=X(0)(-1)^{N(t)}, X(0)$ roo on $\{-1,1\}$.
Now

$$
\begin{aligned}
P_{t}(1,1) & =\mathbb{P}[x(s+t)=1 \mid X(s)=1] \\
& =\mathbb{P}[N(t) \text { is even }]=\sum_{k=0}^{\infty} \frac{e^{-\lambda t}(\lambda(\lambda))^{2 k}}{(2 k)!}=e^{-\lambda t}\left(\frac{e^{\lambda t}+e^{-\lambda \lambda t}}{2}\right)
\end{aligned}
$$

Solving for $P_{t}(1,1), P_{t}(-1,1)$ at $P_{t}(-1,-1)$, we get that

$$
P_{t}=\frac{1}{2}\left(\begin{array}{cc}
1+e^{-2}-2 t & 1-e^{-2 \lambda t} \\
1-e^{-2 \lambda t} & 1+e^{-2 \lambda t}
\end{array}\right)^{-1}
$$

- Alternately, we can write for $t, \delta>0$, and $\pi_{t}=\binom{\pi_{t}(1)}{\pi_{t}(-1)}$

$$
\begin{aligned}
& \pi_{t+\delta}(-1)=\pi_{t}(-1)(1-\lambda \delta)+\pi_{t(1)} \lambda \delta+O\left(\delta^{2}\right) \\
& \pi_{t+\delta}(1)=\pi_{t(-1)}(\lambda \delta)+\pi_{t(1)}(1-\lambda \delta)+0\left(\delta^{2}\right)
\end{aligned}
$$

As before we can compute $\left(\pi_{t+\delta}(x)-T_{t}(x)\right) / \delta$ and take lin $\delta \Delta 0$ to get $\frac{d \Pi_{t}}{d t}=\Pi_{t}^{\top} Q$, where $Q=\left(\begin{array}{cc}-\lambda & \lambda \\ \lambda & -\lambda\end{array}\right)$ Solving this, we get $\Pi_{t}^{\top}=\pi_{0}^{\top} e^{Q t}$, where one can check via computing the e-values of Q that $e^{\alpha t}=\frac{1}{2}\left(\begin{array}{c}1+e^{-2 \lambda 2 t} \\ 1-e^{-2 \lambda t} \\ 1+e^{-2 \lambda t}\end{array}\right)$
Thus in both cases, we managed to derive P_{t} by writing $\frac{d \pi_{T}^{T}}{d t}=\pi_{0}^{T} \quad Q$ and solving the system to get $\pi_{t}^{\top}=\pi_{0}^{\top} \quad P(t)$. Before formalizing this, we see another example, which generalizes the above 2 .

Eg (Uniform CTMC) Let $\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ be a DTMC on countable state-space \mathcal{X}, with transition matrix K, and let $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ be the arrival times of a $\operatorname{PP}(\lambda)$ process $N(t)$ of rate λ. Than the process $X(t)=Y_{N(t)}$ is called a uniform MC with Poisson clack $N(t)$ and subordinate chain Y_{n}

- Thus $X\left(T_{n}\right)=Y_{n} \quad \forall n \in \mathbb{N}$, and $X(t)=X\left(t^{-}\right)$if $t \notin\left\{T_{n}\right\}_{n \in N}$, Note also that T_{n} is not necessarily a discontinuity pt of $X(t)$, since Y_{n} com equal Y_{n-1}.
- Now we have $P_{t}=\sum_{n=0}^{\infty}\left(\frac{e^{-\lambda t}(\lambda t)^{n}}{n!}\right) \cdot K^{n}$
- Note also that $\forall t, \delta>0$, we have $\forall y \in x$

$$
\begin{aligned}
& \pi_{t+\delta}(y)=\lambda \delta\left(\sum_{x \in x} \pi_{t}(x) K(x, y)\right)+(1-\lambda \delta) \pi_{t}(y)+O\left(\delta^{2}\right) \\
\Rightarrow \quad \frac{d \Pi_{t}}{d t} & =\lim _{\delta ग 0} \frac{\pi_{t+\delta}}{\delta}-\pi_{t}=\lambda(K-I) \pi_{t}
\end{aligned}
$$

Solving we get $\Pi_{t}=\Pi_{0} e^{\lambda t(k-I)}$, where we have $e^{\lambda t(k-I)}=\sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t k)^{n}}{n!}=P_{t}$
Now we try and formalize these ideas

Defn (Stochastic Semigroup) $\left\{P_{t}\right\}_{t \geqslant 0}$ is said to be a stochastic semigroup on X if $\forall s, t \geqslant 0$
(i) P_{t} is stochastic matrix, ie., $\sum_{y \in X} P_{t}(x, y)=1 \forall x \in \mathcal{X}$
(ii) $P_{0}=I$ (iii) $P_{t+s}=P_{t} P_{s} \forall s, t \geqslant 0$

- A stochastic semigroup P is called standard if it is continuous at the origin, ie, $\lim _{\delta \rightarrow 0} P_{\delta}=P_{0}=I \quad$ (pointwise convergence ?) Then we have the following 2 properties.
i) P_{t} is continuous, ie., $\lim _{\delta \rightarrow 0} P_{t+\delta}=P_{t} \quad \forall t \geqslant 0$
ii) $\forall x \in x, \exists-Q(x, x)=Q(x) \triangleq \lim _{\delta \rightarrow 0} \frac{1-P_{\delta}(x, x)}{\delta}, G(x y) \triangleq \lim _{\delta \rightarrow 0} \frac{P_{\delta}(x, y)}{\delta}$

The proof is purely analytical (see Brémaid, Ch, The 2.1, and not crucial for our purposes, so we take it as a fact.
Def (Infinitesimal Generator) - For a CTMC $\{X(t)\}$ on X with stochastic semigroup P_{t}, its infinitesimal generator is given by $Q=\lim _{\delta \downarrow 0} \frac{P_{\delta}-I}{\delta} \quad\left(\because P_{0}=I\right)$

- Re generator Q is thus the derivative of $P_{t}-I_{a} t f=0$, and cam be found from P_{t}. On the other hand, P_{t} can usually also be found from $Q\left(\right.$ as $\left.P_{t}=e^{t \theta}\right)$ in most cases...

Eg (Birth-Death Process) A cortinuous-time birth-death process $X(t)$ is a CTMC taking values in \mathbb{N} s.t. $\forall t, \delta>0$ ad $i \in \mathbb{N}$ $\mathbb{P}[X(t+\delta)=i+1 \mid(t)=i]=\lambda_{i} \delta+0\left(\delta^{2}\right), \mathbb{P}[X(+\delta \delta)=i-1 \mid X(t)=i]=\mu_{i} \delta+\left(\delta^{2}\right)$ $\mathbb{P}[X(t+\delta)=i \mid X(t)=i]=1-\left(\lambda i+\mu_{i}\right) \delta+O^{\prime}\left(\delta^{2}\right)$
and all other transitions have probability $O\left(\delta^{2}\right)$
Given $\left\{\lambda_{i}, \mu_{i}\right\} i r i r$ and λ_{0}, intuitively we would say $X(t)$ has a generator $Q(i, i+1)=\lambda_{i}, Q(i, i-1)=\mu_{i} I\{(i \geqslant 1\}, Q(i, j)=0 \quad \forall j \notin\{i-1, i, i+1\}$ However, if $\lambda_{i}, \mu_{i} \eta_{\alpha}$ as $i \not \hat{f}_{\infty}$, such a limit may not exist. We need to be somewhat careful dealing with such cases.
Defn - Consider semigroup P_{t} with generator $Q=\lim _{\text {so }} \frac{P_{\delta}-I}{\delta}$ - P_{t} is stable of $(-Q(x, z)=) Q(x)=\lim _{\delta=0} \frac{1-P_{s}(2, x)}{\delta}<\infty \forall x \in X$ - P_{t} is conservative if $\left(-Q\left(x^{2}\right)=\right) Q(x)=\sum_{y \neq x} Q(x, y) \quad \forall x \in X$

- Note that for any δ, by defn of the stock semingroup $\forall x, \sum_{y \in x}^{s} P_{\delta}(x, y)=1 \Rightarrow \frac{1-P_{\delta}(x, x)}{\delta}=\frac{\sum_{y \neq x} P_{\delta}(x, y)}{\delta}$ Thus if $\lim _{\delta \downarrow 0} \sum_{y \neq x} P_{\delta}(x, y)=\sum_{y \neq x} \lim _{\delta \downarrow 0} P_{\delta}(x, y)$, than P is stable and conservative. We assume hereforth that Q is stable and conservative - note though that checking this for a CTMC (fo resample, abirth-deth chain) is non-Tvival

Kolmogerov's Differential Equations

- Given a standard stochastic semigroup P_{t}, we can write $\forall t, s$

$$
\frac{P_{t+\delta}-P_{t}}{\delta}=P_{t} \frac{P_{\delta}-I}{\delta}=\frac{P_{\delta}-I}{\delta} P_{t}
$$

Assuming the limit $\delta \pm 0$ exists, we get two systems of diff ens
i) $\frac{d P_{t}}{d t}=P_{t} Q\binom{$ Forward diff }{ system } ii) $\frac{d P_{t}}{d t}=Q P_{t}$ (Backward diff) $\left.\begin{array}{c}\text { system }\end{array}\right)$

In more detail, $\forall x, y \in X$, we have the diffegns
Formed i) $\frac{d P_{t}(x, y)}{d t}=\sum_{z \in x} P_{t}(x, z) Q(z, y)=-P_{t}(x, y) Q(y)+\sum_{z \in x} P_{t}(x, z) Q\left(z_{y}\right)$

- If X is finite, then subjed to $P(0)=I$, the above systems have a unique soln $P(t)=e^{t Q}=\sum_{k=0}^{\infty} \frac{t^{k} Q^{k}}{k!}$
- For verifying this, the main thing that one must check is that $e^{t 2}$ is defined. For this we have the following-
- Lemma - For any $n \times n$ matrix A with $A(i, j) \in \mathbb{R}$, and for all $t>0$, the series $\sum_{k=0}^{\infty} t^{k} A^{k} / k$! converges componentwise (ie, for all $\left.i, j \in[n]^{2}\right)^{\prime}$
Pf -Let $A_{k}(i, j)=\left(A^{k}\right)_{i, j}$, and define $\Delta=\max _{i, j}\left|A_{1}(i, j)\right|$. Check via induction that $\left|A_{k}(i, j)\right| \leq \Delta^{k} n^{k-1}$. Hence $\forall i, j \in[n]^{2}$, we have $A_{k}(i, j) t^{k} / k!\leqslant \frac{1}{n}(n \Delta t)^{k} / k!\Rightarrow\left(e^{A t}\right)_{i j} \leqslant e^{n \Delta t} / n$ 国
- What about when X is countable? This gets more technical, so we state the rain results with oat proof
The - Let P_{t} be a standard stochastic semigroup.
i) If P_{t} is stable and conservative, then $\frac{d P_{t}}{d t}=Q P_{t}$
(ie, we can take limits to get Kolmogorou's backward system)
ii) If in addition $\sum_{k \in x} P_{t}(x, k) Q(k)<\infty \forall x \in x$, then also $\frac{d P_{t}}{d t}=P_{t} Q$ (ie, Kolmogarov's formond system is satisfied)
iii) Finally let π_{t} dense the distribution of $X(t)$ at any $t \geqslant 0$. Assuming the above conditions, and also, that $\forall t \geqslant 0$ we have $\sum_{x \in x} Q(x) \pi_{t}(x)<\alpha$. Then we have

$$
\left.\frac{d \pi_{t}^{\top}}{d t}=\pi_{t}^{\top} Q_{, i e} \forall x t\right), \frac{d \pi_{t}(x)}{d t}=-\pi_{t}(x) Q(x)+\sum_{y \neq x} \pi_{t}(g Q(y x)
$$

-TV summarize, assuming $Q(x)<\infty$ and $Q(x)=\sum_{y \neq x} Q(x, y)$ (ie, Q is stable and conservative), we can solve the back sand egns to obtain $P_{t}=e^{Q t}$. Thus Q is a sense completely defies the CTMC.

- $Q(x, y)$ is sometimes referred to as the transition rate from x toy $($ fer $x \neq y)$, as it represents the rata of 'probability' flowing form x to $y\left(\right.$ ie,, $\left.P_{\delta}(x, y)=Q(x, y) \delta+O\left(\delta^{2}\right)\right)$. This can be represented by a transition rate diagram \equiv

Deft (Irreducibility) - ACTMC $X(t)$ with generator Q is irreducible if $P_{t}(x, y)>0$ for any $t>0$, and all $x, y \in X$ - In fact, for any $x, y \in X, P_{t}(x, y)>0 \forall t$, or $P_{t}(x, y)=0 \forall t$

- Defn (Stationary Distribution) A stochastic redon π (ie, with $\Pi(x) \geqslant 0 \quad \forall x \in X$ and $\left.\sum_{x \in x \Pi} \Pi(x)=1\right)$ is a stationary distr of a $\operatorname{CTMC}\left(Q, P_{t}\right)$ if $\pi^{\top} P_{E}=\pi^{\top} \quad \forall t \geqslant 0$.
Moreover if Q is stable and conservative, then Π
satisfies the global balance eqn $\Pi^{\top} Q=0$
Given the above defy, we can state a convergence theorem for GMCs The (CTMC Conveguee Theorem) For an irreducible CTMC $\left(P_{t}, Q\right)$
i) If stationary dist Π exists, then it is unique, and noreaur

$$
P_{t}(x, y) \xrightarrow{t \rightarrow \infty} \Pi(y) \quad \forall x, y \in X
$$

2) If no stationary Π exists, then $P_{t}(3, y) \xrightarrow{t \rightarrow \infty} 0 \quad \forall x, y \in \mathcal{X}$

If Sketch $\left(G \& S, C_{n} 6\right.$, Thm 21) For arg $k>0$, define skeleton DTMC $Y_{n}=X(n k)$.

 Now consider $k_{1}, k_{2} \in \mathbb{Q}$: sine $k_{n}=k_{22} n^{\prime}$ nfiwitey often $\Rightarrow \pi_{\left(k_{3}\right)}=T_{\left(k_{2}\right)}$. For any other $t \notin \mathbb{Q}$, we can complete the proof ria continuity a arguments.
Tum_{n} (CTML Ergodic Theorem) - For irreducible CTMC X(t) with stationary dist. π, we have $\lim _{T \rightarrow \alpha} \frac{1}{T}{ }_{0}^{\top} f f\left(x(s) d s=\sum_{x \in x} f(x) T(x) \text { ass. } \forall f s . t \mathbb{E}_{\pi}[f(x)]\right]_{x}$ Pf Sketch - Similar to DIMC (via renewal cycles)

CTMCs via Embedded Chains

- An alternate approach to constructing CTMCs is by constructing them from DTMCs. Thee are two ways to do this:
i) The Jump Chain - This exists for any CTMC
ii) The Uniformizad Chain - This exists when $\sup _{x \in x} Q(x)<\infty$

The Jump Chain

- We construct a process $X(t)$ on some countable X, for $\in \in \mathbb{R}_{+}$ as follows -
- Start with a DTMC $\{1 /\}_{n \in \mathbb{N}}$ on X, with $y_{0} \sim T_{b}$, and transition prob matrix $A=\{A(x, y)\}$. We assume that $A(x, x)=0 \forall x \in X$; in other words, Y_{n} has no self-loops, but always' jumps' to a new state.
- Next suppose we are given a sequence $\left\{E_{n}\right\} n \in \mathbb{N}$ of cid $E_{x p}(1)$ ross (ind of $\left.y_{n}\right)$, ard a function $\{X(x) ; x \in X\}$ of inverse holding times for each state. Essentially, whenever $X(t)$ reaches a state $x \in X$, we want it to stay there for time $W \sim \varepsilon_{x p}(\gamma(x))$ before jumping to sore $y \neq x$.
- We now construct the chair as follows.
- Let $X(0)=Y_{0} \sim \Pi_{0}$ and $T_{0}=0$.
- Define $W_{0}=E_{0} / \gamma\left(Y_{0}\right) \sim \varepsilon_{x p}\left(\gamma\left(Y_{0}\right)\right)$
- Set $T_{1}=T_{0}+W_{0}$, and $X\left(T_{1}\right)=Y_{1}$
- Subsequently for any $k \geq 1$, we define $W_{k}=E_{k} / f\left(Y_{k}\right), T_{k+1}=T_{k}+W_{k}, X\left(T_{k+1}\right)=Y_{k+1}$
- Define $T_{\infty}=\lim _{k \rightarrow \infty} T_{k}$. Than we can write

$$
X(t)=\sum_{k=0}^{\infty} Y_{k} \mathbb{I}\left\{t \in\left[T_{k}, T_{k+1}\right)\right\} \quad \forall t \in\left[0, T_{\infty}\right)
$$

- It is not hard to check that the above process is indeed Markovian. Moreover, we could also allow $\lambda(x)=0$ to model absorbing states, or $\lambda(x)=\alpha$ to model states visited instantaneously. For the following, however we restrict to $\lambda(x) \in(0, \infty) \forall x \in X$.
- One potential problem still is that T_{α} could be finite (and hence $X(t)$ is only defined on $t \in\left[0, T_{\infty}\right] \subset \mathbb{R}$)
- Def. The process $X(t)$ is said to be explosive if $\mathbb{P}_{x}\left[T_{\alpha}<\infty\right]>0$ for some $X(0)=x$, and regular

$$
\text { if } \mathbb{P}_{x}\left[T_{\alpha}<\alpha\right]=0 \text { for al! } X(0)=x \in X \text {. }
$$

- As an example, consider a birth process with $\gamma(x)=x^{2}$

Thu - For any $x \in X, \operatorname{given}_{n}\left\{Y / n_{n \in \mathbb{N}}\right.$ add $\{(X / n)\}$ as above

$$
\mathbb{P}_{x}\left[T_{\alpha}<\alpha\right]=\mathbb{P}_{x}\left[\sum_{n} \frac{1}{\gamma\left(x_{n}\right)}<\infty\right]
$$

In other words, $X(t)$ is regular iff $\sum_{n} \gamma\left(/ N_{n}\right)^{-1}=\propto$ ass.
Moreover, this holds whenever one of the following hold
i) X is finite, ii) $\gamma(x) \leqslant \gamma<\alpha \forall x \in \mathcal{X}$,
iii) Given $A \subset X$ the transient states of Y_{n}, we have $\forall x \in X, \quad \mathbb{P}_{x}\left[y_{n} \in A \forall_{n} \in \mathbb{N}\right]=0$

We first need a property of Exponential rv
Proposition - If $\left\{E_{n}\right\}$ are independent Exponential roo st $E_{i} \sim \varepsilon_{x p}\left(\lambda_{i}\right) \forall i \in \mathbb{N}$. Then

$$
\sum_{n \in \mathbb{N}} E_{n}<\infty \text { ass. iff } \sum_{n \in \mathbb{N}} \lambda_{i}^{-1}<\infty
$$

Pfof theorem - By construction, we hove $T_{\infty}=\sum_{n \in \mathbb{N}} E_{n} / f\left(y_{n}\right)$ This is a sum of indep Exponential rvs, and by the above prop n, $\mathbb{P}\left[T_{\infty}<\alpha \mid\left\{y_{n}\right\}\right]= \begin{cases}1 & \text { if } \sum \gamma\left(1 y_{n}\right)^{-1}<\alpha \\ 0 & \text { if } \sum \gamma\left(y_{n}\right)^{-1}=\infty\end{cases}$
Thus $\mathbb{P}\left[T_{\infty}<\infty\right]=\mathbb{P}_{x}\left[\sum_{n} \lambda\left(y_{n}\right)^{-1}<\alpha\right]$ Now we want to verify the sufficient conditions

- Far (i), note that χ finite means $\gamma(x) \leqslant \gamma<\alpha$ $\forall x \in \mathcal{X}$. Thus its enough to verify (ii)
- For (ii), we have $\sum_{n} \gamma\left(y_{n}\right)^{-1} \geqslant \sum_{n} \gamma^{-1}=\propto$
- For (iii), suppose $\mathbb{P}\left[Y_{n} \in A \forall_{n}\right]=0$ implies that \exists some $x_{0} \in X \mid A$ s.t. x is hit infinitely often
Suppose $y_{n_{j}}=x$ for some set $n_{j}, j \in\{1,2, \ldots\}$. Then

$$
\sum_{n \in \mathbb{N}^{2}} \gamma\left(y_{n}\right)^{-1} \geqslant \sum_{j \in \mathbb{N}_{+}} \gamma\left(y_{n_{j}}\right)^{-1}=\sum_{j \in \mathbb{N}_{+}} \gamma\left(x_{0}\right)=\alpha
$$

- Assume now we are given DTMC transition matrix A ad holding times $\{\gamma(x)\} x \in x$ which are nonexplosive
Proposition $\forall x, y \in \mathcal{X}, t \geqslant 0$, we have

$$
\begin{aligned}
& P_{t}(x, y)=e^{-\gamma(2) t} \mathbb{\|}\{z=y\}+\int_{0}^{t} \gamma(x) e^{-r(x) s}\left(\sum_{z \neq x} A(x, z) P_{t-s}(z, y)\right) d s \\
& \begin{aligned}
P_{f}-P_{t}(x, y) & =\mathbb{P}[X(t)=y \mid X(0)=x] \\
& =\mathbb{P}\left[X(t)=y, \omega_{0}>t \mid X(0)=x\right]+\mathbb{P}\left[X(t)=y, \omega_{B} \leq t \mid X(0)=x\right]
\end{aligned}
\end{aligned}
$$

Moreover by construction, we have

$$
\begin{aligned}
\mathbb{P}\left[X(t)=y, W_{0}>t \mid X(0)=x\right] & =e^{-\gamma(x) t} \mathbb{\|}\{y=x\} \\
\text { and } \mathbb{P}\left[X(t)=y, \omega_{0} \leqslant t \mid X(0)=x\right] & =\sum_{z \pm x} \mathbb{P}\left[X(t)=y, Y_{1}=z, \omega_{0} \leq t \mid X(0)=x\right] \\
& =\sum_{z+x} t \int_{0} e^{-\gamma(2) s} \gamma(z), A(x, z) \cdot P_{t s}(z, y) d s
\end{aligned}
$$

- Now given the expression for $P_{t}(x, y)$, we get thefollasig i) $\lim _{t>0} P_{t}(x, y)=\mathbb{1}\{x=y\} \Rightarrow \lim _{t \pm 0} P_{t}=I \Rightarrow P_{t \text { is standard }}$

$$
\begin{aligned}
& \text { ii) } P_{t}(x, y)=e^{-t \gamma(x)}\left[\underline{1}\{x=y\}+\int_{0}^{t} \gamma(x) e^{\gamma(x) u} \sum_{z \neq x} A(z, z) P_{u}(z, y) d u\right] \\
& \text { (substituting } u=t-s \text {) } \\
& \Rightarrow \frac{d P_{t}(x, y)}{d t}=-\gamma(x) \quad P_{t}(x, y)+e^{-\gamma(z) t} \gamma(x) e^{\gamma(x) t}\left(\sum_{2 \pm \pm} A(x, z) P_{t}(z, y)\right) \\
& =\gamma^{\prime}(x)\left(-P_{t}(x, y)+\sum_{z \neq x} A_{i}(x, z) P_{t}(z, y)\right) \\
& \Rightarrow \quad \frac{d P_{t}}{d t}=Q P_{t} \text {, where } Q(x, z)=\left\{\begin{array}{l}
-\gamma(x) ; z=x \\
\gamma(x) A(x, z) ; z \neq x
\end{array}\right. \\
& \text { (Kalmogarou's Bachased } \varepsilon_{n n} \text {) } \\
& \begin{aligned}
& \sum \gamma(x) A(x, z) ; z \neq x \\
= & \operatorname{Dr}(A-I)
\end{aligned} \\
& \begin{aligned}
&=\operatorname{Dr}(A-I) \\
& \operatorname{diag}(\gamma)=\left(\begin{array}{ccc}
\gamma(1) & 0 & 0 \\
\left.0^{\gamma(1)}\right) & 0 \\
& \ddots(r)
\end{array}\right)
\end{aligned}
\end{aligned}
$$

Moreover $Q(x, x)=-\gamma^{\prime}(x)<\alpha \forall x$, and $\sum_{z \neq x} \gamma^{\prime}(z) A \cdot(x, z)=\gamma(x)=-Q(x, z)$ Thus, Q is stable and conservative.
iii) The formula for $P_{t}(x, y)$ is based on conditioning on the first jump (and hence yields the back word DES. To get the forward $D E$, we need to condition on the last jump - for this to exist, we need the system to not be explosive. Now conditioning on the last jump, we get $P_{t}(x, y)=e^{-\gamma(z) t} \mathbb{L}_{\sum k=y_{j}}+{ }_{0}^{t} \int\left(\sum_{z+y} e^{-\gamma(z) s} P_{s}(x, z) Q(z, y)\right) d s$ Differentiate to derive the Kolmogrso o formand equation
iv) Given a (stable + conservative) infinitesimal generator Q, we can derive the jump chain parameters (A, γ) as

$$
\gamma(x)=-Q(x, x) \forall x \in X, \quad A(x, y)=Q(x, y) / \gamma(x) \quad \forall x, y \in X
$$

Similarly given a sample path $X(t)$ of a CTMC, we can Obtain the subordinate jump DTMC by tracking the sequence of Unique states of $X(t) \quad\left(s_{0} Y_{0}=X(0), T_{1}=i n f\{t>0 \mid X(t) \neq X(0)\}\right.$, $\left.Y_{1}=X_{T_{1}}, T_{2}=\inf \left\{t>T_{1} \mid X(t) \neq X\left(T_{1}\right)\right\}, Y_{2}=X_{T_{2}}, \ldots\right)$. Moeour, the holding times $W_{i}=T_{i}-T_{i-1}$ can be used to give the undelying driving clock process as $E_{i}=W_{i} \cdot \lambda\left(X_{T_{i}}\right)$
The Unifermized Chain

- Earlier we sow a uniform $X(t)=Y_{N(t)}$, where Y_{n} is a DTMC with transition matrix K (where $K(x, x)$ cm be $\geqslant 0$, ie, self loops are allowed), and $N(t) \sim P P\left(\lambda_{\infty}\right)$. The associated stochastic semi group is $P_{t}(x, y)=\sum_{n=0}^{\infty} \frac{e^{-\lambda t}(\lambda t)^{n}}{n!} K^{n}(x, y)$
- We can differentiate to chock that

$$
\begin{aligned}
& \frac{d P_{t}(\lambda, y)}{d t}=-\lambda e^{-\lambda t} \mathbb{1}\{x=y\}+\sum_{n=1}^{\infty}\left(-\lambda^{2} t+n \lambda\right) \frac{(\lambda t)^{n-1} e^{-\lambda t} k^{n}(x, y)}{n!} \\
& \text { Setting } t=0, \text { we get } d P_{0}(x, y) / d t=\lambda\left(k(x, y)-\mathbb{I}_{\{x-y\}}\right) \Rightarrow Q=\lambda(k-I)
\end{aligned}
$$

- To determine the jump chain (A, γ) associabl with the Uniform CTMC (K, λ), we have $\gamma(x)=-Q(2,2)=\lambda(1-K(m, y)), A(3,2)=0$ and $A(x, y)=\frac{Q(x, y)}{\gamma(x)}=\frac{K(2, y)}{1-K(x, x)}$. Note - $1: 20$ A $A(x, y)=\mathbb{P}\left[Y_{n+1}=y \mid y_{n}=x, Y_{n+1}+z\right]$
- Note that $-Q(x, 2)=\lambda(1-K(x, 2)) \leq \lambda \Rightarrow \sup _{x \in x}(-\theta(2, x)) \leq \lambda<\infty$. Moreover, given any Q sit $\sup _{x \in x}(-\theta(x, x))<\alpha$, we can obtain a uniform MC with $\lambda=\sup _{x \in x}(-Q(x, x)), K\left(x_{x}\right)=1+Q\left(x_{x},\right) / \lambda, K(x, y)=Q(x, y) / \lambda$
Thus $C T M C Q$ is uniformizable of $\sup _{x \in x}(-Q(2, x))<\alpha$.
Examples
i) Poisson process $P P(\lambda) \equiv Q(x, y)=\lambda \mathbb{1}_{\{y=x+1\}}-\lambda \mathbb{1}_{\{y=r\}}$

Q (0) $\overbrace{(1)}^{\lambda}$

rate diagram jump chain :unifermizel chain
ii) Gerevalized flip-flop -

rate diagram

$\gamma(0)=\mu_{01} \quad \gamma(0)=\mu_{10}$
! $\lambda=\max \left(\mu_{01}, \mu_{10}\right)$
, uniformized chain
iii) Generalized birth-deal process $-Q(i, i+1)=\lambda_{i}, Q(i, i-1)=\mu_{\text {: }}$ rate diagram

jump chain $\gamma(i)=\mu_{i}+\lambda_{i} \forall_{i}$
unifomi god chain

$$
\lambda=\sup _{i}\left(\lambda_{i}+\mu_{i}\right)<\sum_{\text {assume }}^{<\infty}
$$

Finally we want to understand stationary distributions.

- Recall: Given CTMC $\left(P_{t}, Q\right), \Pi$ is a statiorang distr iff
i) $\pi^{\top} P_{t}=\pi^{\top} \quad \forall t \geqslant 0$
ii) (Assuming $Q_{\text {is s stable, conservative) }} \pi^{\top} Q=0$

The CTMC is ergodic if it is irreducible, and $T(x)>0$ for some $x \in X$
We now want to relate this to the jump chain (A, γ) and uniform chain (K, λ).
Recall $Q^{j}=D_{r}(A-I)$ for the jump chain, $Q^{u}=\lambda(K-I) f_{o}$ the uniformized chain. Thus the stationary distr satisfies

- Uniformized Chain -

$$
\pi^{\top} \lambda(K-I)=0 \Rightarrow \pi^{\top} K=\pi^{\top}
$$

In other words, stationary dist of CTMC $Q^{u} \equiv$ station ny dist of DTMCK
Maneuver CTMC $X(t)$ with generator Q is ergodic $\Leftarrow X(t)$ is uniformizable with uniform chain $\left(\lambda_{1}, K\right)$, and K is ergodic

- Jump Chain -

$$
\Pi^{\top} D_{\gamma}(A-I)=0 \Rightarrow \pi(x) \gamma(x)=\sum_{y \neq 2} \pi(y) \gamma(y) A\left(y_{y}\right) \forall_{x}
$$

Moreover, the chain is ergodic if \exists sol π st $\sum_{x \in x} \pi(x)<\infty$

Stationary Distr - Calculation \& Examples
To summarize the formulations of CTMCs -

Eg.(General Bith-Death Chain) $x=1 N_{0}$, in state i new arrival after time Exp $\left(\lambda_{i}\right)$, departee after tire $\varepsilon_{x p}\left(\mu_{i}\right)$
rate diagram
$Q(a, y)=\lambda_{2} ; y=x$

Assuming this has a stationary dist T, we can Solve for it in Sways
i) Using the rate matrix - π stationary if $\sum_{x=0}^{\alpha} \pi(x)=1$ and $\pi^{\top} Q=0$

Thus $\pi(2) \mu_{2}=\left(\lambda_{1}+\mu_{1} \pi(1)-\lambda_{0} \pi(0)=\lambda_{1} \pi\left(1_{1}\right), \mu_{3} \pi(3)=\left(\lambda_{2}+\mu_{2}\right) \pi(2)-\lambda_{1} \pi(1)=\lambda_{2} \pi(1)\right.$ Now by induction, we can show $\Pi(i) \mu_{i}=T(-1) \lambda_{i} \quad \forall i \geqslant 1$
Let $\alpha_{0}=1, \alpha_{x}=\lambda_{x-1} / \mu_{x} \Rightarrow \pi(x)=\pi(0) \cdot \overbrace{\left(\alpha_{0} \alpha_{1} \ldots \alpha_{x}\right)}^{\equiv \beta_{x}} \forall x \in \mathbb{N}_{0}$
Thus $\pi(x)=\frac{\alpha_{0} \alpha_{1} \ldots \alpha_{2}}{z} \cong \frac{\beta_{x}}{z}$, whee partition fun (i, promaliztion) $z=\sum_{x=0}^{\infty} \beta_{x}$
ii) Using the jump chain - $T(x) \gamma(x)=\sum_{y \neq 2} \pi(y) \gamma(y) A(y, x) \quad \forall x \geqslant \mathbb{N}_{0}$

$$
\Rightarrow \pi(0) \lambda_{0}=\mu_{1} \pi(1),\left(\lambda_{i}+\mu_{i}\right) \pi(i)=\lambda_{i-1} \pi(i-1)+\mu_{i+1} \pi(i+1) \quad \forall i \geqslant 1
$$

Now we solve as before to get $\pi(x)=\beta_{x} / z, Z=\sum_{x=0}^{\alpha} \beta_{x}=\sum_{x=0}^{\alpha}\left(\prod_{i=0}^{x} \alpha_{i}\right)$
iii) Using the uniform chain - $\lambda \geqslant \max _{i \geqslant 0}\left(\mu_{i}+\lambda_{i}\right) \quad$ (assume $<\alpha$)

Moreover $\pi(x) \mu_{x} / \lambda=\pi(x-1) \lambda_{x-1} / \lambda \Rightarrow \pi(x)=\alpha_{x} \pi\left(x_{-1}\right)=\left(\prod_{i=0}^{n} \alpha_{i}\right) \pi(0)$
(This follows from the balance equs for DTMC K -Note also K is veresible)
Again we get $\Pi(x)=\frac{\beta_{x}}{z}=\prod_{i=2}^{n} \alpha_{i}, z=\sum_{z=0}^{\infty}\left(\prod_{i=0}^{z} \alpha_{i}\right)$

- Thus in all cases we get $T(x)=\beta_{x} / z, \beta_{x}=\prod_{i=0}^{x-1}\left(\frac{\lambda_{i}}{p_{i+1}}\right), z=\sum_{x=0}^{\infty} \beta_{x}$

For this to be defied, we need $Z<\alpha \Rightarrow 1+\frac{\lambda_{0}}{\mu_{1}}+\frac{\lambda_{0} \lambda_{1}}{\mu_{1} \nu_{2}}+\frac{\lambda_{0} \lambda_{1} \lambda_{2}}{\mu_{1} \nu_{2} \mu_{3}}+\cdots<\infty$

Finally to guarantee that π exists, we need $*+$ renexplosiveness of the MC. We can ensure this in two ways
i) $\sup \left(\lambda_{i}+\mu_{i}\right)<\alpha$ (ie, uniformizable chain), or
ii) The jump chain DMCA is positwe recurrent : for this, we can check balance equs as above to get the cord

$$
1+\frac{1 \cdot \gamma(1)}{\rho_{1}}+\frac{\gamma(\lambda 1)}{\rho_{1}} \cdot \frac{\lambda_{1}}{\partial\left(x_{1}\right.} \frac{\left.\gamma_{1}\right)}{\rho_{2}}+\frac{\lambda_{1} \lambda_{2} \gamma(3)}{\mu_{1} \beta_{2} \rho_{3}}+\ldots<\alpha \Rightarrow\left(1+\frac{\lambda_{1}}{\rho_{1}}+\frac{\lambda_{1} \lambda_{2}}{\mu_{1} \lambda_{2}}+\frac{\lambda_{1} \lambda_{2} \lambda_{3}}{\mu_{1} \nu_{2} \mu_{3}}+\cdots\right)<\alpha
$$

This has many special cases
i) $\lambda_{i}=\lambda, \quad \mu_{i}=\mu \prod_{\{i>0\}} \quad \forall i \quad \quad M / M / \perp$ queue (O) ${\underset{k}{\mu}\left(1_{k} \mu\right.}_{\lambda}^{\lambda}(2) \cdots, l_{e}^{-1} \rho=\frac{\lambda}{\mu} \Rightarrow z \sum_{i=0}^{\infty} p^{i}<\alpha$ if $\rho<1$, $\pi(i)=(1-\rho) p^{i}$
ii) $\lambda_{i}=\lambda, \mu_{i}=(i \Lambda k) \mu \forall i\left(\rho=\frac{\lambda}{\mu}\right) M / M / k$ queue

iii) $\left.\lambda_{i}=\lambda \mathbb{I}\{i \leq k\}, \mu_{i}=i \mu \|\{i \leq k\}\right\} \left._{k}\left(e=\frac{\lambda}{\mu}\right) \quad M / M / k \right\rvert\, k q u e v e$

iv) $\lambda_{i}=\lambda, \mu_{i}=i \mu \mathbb{1}_{\{i>0\}} \quad(p=\lambda / \mu) \quad$ MIM/ ∞ queue

$$
\pi(x)=\frac{e^{-p} e^{x}}{x!}=P_{0 i}(p)
$$

Reversibility
Birth-death chains are a special case of reversible CTMCs. T_{θ} define these, consider any $T>0$, and $\operatorname{CTM} \angle X(t)$. Then the tine reversed process $\tilde{x}(t)^{\prime}=x(T-t)$ is a cimcon $[0, T]$ with senigroup \tilde{P} satisfying $\forall x, y \in x$, the detailed balance eqn $\Pi(x) P(x, y)=\pi(y) \tilde{P}(y, n)$. To avoid dependence on T, we extend $X(t)$ to negative time by defining $\{x(-t) ; t \geqslant 0\}$ as a CTMC with semigroap \tilde{P}.
The (CTMC Kelly's Lemma) - Let $X(t)$ be a regular DTMC with generator Q, and consider any dist π. Let \tilde{Q} be defined such that $\pi(x) Q(x, y)=\pi(y) \tilde{Q}(y, x)$ $\forall x, y \in X$, and $\tilde{Q}(x, y)=-\sum_{y \neq x} \tilde{Q}(x, y)$. If $\tilde{Q}(x, x)=Q(x, x)$ $\forall x \in X$, then π is the stationary distr of Q, and \tilde{Q} generates the revere-time process $\tilde{x}(t)$,

- The proof is similar to the DTMC case. Moreour, if $\tilde{Q}=Q$, then $x(t)$ is reversible (ie, $x(t) d \tilde{x}(t)$)
- Corr: A stationary birth-death process is reversible. Pf. Recall $\Pi(x)=\frac{1}{z} \cdot \frac{\lambda_{0}}{p_{1}} \cdot \frac{\lambda_{1}}{p_{2}} \cdots \frac{\lambda_{2-1}}{\rho_{x}}$. Tuns for any $x \geqslant 1$, we have $\Pi(x) \mu_{x}=\pi(x-1) \lambda_{x-1}$, and thus its veversible.
- A more surprising and useful consequence of reversibility occurs when we consider birth-death chains where $\lambda_{x}=\lambda \forall z \geqslant 0$, ie., all the birth rates are the same. This can be interpreted as saying that the births follow a PPP($\lambda)$ process, independent of the state. Assume also that the chain is ergodic, ie., $\sum_{i=1}^{\infty} \frac{\lambda^{i} p_{1} p_{2} \ldots p_{i}}{}<\infty \quad($ from $\circledast)$
Thu (Burke's Thu) - Let $X(t)$ be a birth-death process with birth-rate $\lambda_{x}=\lambda \forall x \geqslant 0$, and let $A(s, t]$ and $D(s, t]$ denote the number of 'births (ie, arrivals) and deaths (ie, departures) in any interval $(s, t]$. Then
i) $\forall t,\{D(s, t], s<t\} \Perp X(t) \Perp\{A(t, u], u>t\}$
ii) The departure process is $\operatorname{PP}(\lambda)$
$P f$ - By reversibility, $X(t) \stackrel{d}{\leftrightarrows} X(-t)$. Also the upward jumps in $X(t)$ (ie., arrivals) form a $P P(\lambda)$, and are equal in dist' to the upward jumps in $X(-t)$, which correspond to departures in $X(t)$
- Also by construction, $A(t, w] \Perp \times(t)$ for any $0 \leq t<w$. These however ane de parties $D(-w,-t]$ for $X(-t)$. Thus past departures $\Perp X(t)$

- This now allows us to build complex networks of queues!

Eg $($ Tandem Queues $)-2 \mathrm{M} / \mathrm{M} / 1$ queue is series

Suppose $\rho_{1}=\frac{\lambda}{\mu_{1}}<1 \Rightarrow X_{1}(t) \sim M|M| 1, \lim _{t \rightarrow \infty} \mathbb{P}\left[X_{1}(t)=\lambda\right]=\rho_{1}^{x}\left(1-p_{1}\right)$
By Burke's $12 m$, departures form 1= arrivals from $2 \sim \operatorname{PP}(\lambda)$
Now if $\rho_{2}=\frac{\lambda}{N_{2}}<1$, then $X_{2}(t) \sim M / M / 1, \lim _{t \rightarrow \infty} P^{[}\left[x_{2}(t)=x\right]=\rho_{2}^{x}\left(1-\rho_{2}\right)$

- Claim-Stationany dist of $\left(x_{1}, x_{2}\right) \equiv \pi\left(x_{1}, x_{2}\right)=\rho_{1}^{x_{1}} \rho_{2}^{x_{2}}\left(1-p_{1}\right)\left(1-p_{2}\right)$

Pf - Kelly's Lemma! (heck $\Pi\left(x_{1}, x_{2}\right) Q\left(\left(x, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\pi\left(y_{1}, y_{2}\right) \theta\left(\left(y, y_{2}\right),\left(x_{1}, x_{2}\right)\right)$

- Note- This does not mean $X_{1}(t) \Perp X_{2}(t)$! Rather, what it says is that they are independent under the stationary dist Π. Such a distribution is said to be product form.
Eg (Queue with Feedback) - Suppose departures from an M/M)1 queue returns W.P. P.
Suppose $X(t)$ converges to a stationary distr.
Then the 'stededystate' rate of arrivals Λ must obey $\Lambda=\lambda+p \Lambda \Rightarrow \Lambda=\frac{\lambda}{1-p}$ Nos assume $P=\frac{\lambda}{\mu(1-p)}<1$. Intuituely, $\pi(x)=(1-p)_{p}^{x} \quad \forall x \geqslant 0$ Again this is true - check by verifying reversibility!

