Intro to Markov Chains

- Markov property and Chapman-Kolmogoroo Equs
- Classification of states
- Existence \& uniqueness of stationary distribution
- Finite chains \& Perron-Frobenius
- Reversibility
- The Ergodic Theorem for HMC
- Foster-Lyapunos conclition
- Stochastic Process - Collection of rv $\left(X_{t} ; t \in T\right)$, $X_{t} \in X$, on a common probability space (Ω, F, \mathbb{P}), and in dexed by a time parameter t
- $T=\mathbb{N}_{0}, X \equiv$ discrete \rightarrow discrete-time, discrete-space process. Ey-random walk, branching process $-T=\mathbb{R}_{t}, X \equiv$ discrete \rightarrow contimanns-time, discrete -space process

Eg- Poisson process, queueing models, epidemics

- $T=\mathbb{R}_{+}, \mathcal{X} \equiv$ contimouns \rightarrow continnous-time, contimous-space process Eg - Brownian motion
- Markov chain -Stochastic process $\left(X_{n i n} \in \mathbb{N}_{0}\right)$ on discrete space X obeying $\forall n \in \mathbb{N} 0,\left(x_{0}, x_{1}, \ldots, x_{n-1}, x\right) \in X^{n+1}$

$$
\mathbb{P}\left[X_{n}=x \mid X_{0}=x_{0}, X_{1}=x_{1}, \ldots, X_{n-1}=x_{n-1}\right]=\mathbb{P}\left[X_{n}=x \mid X_{n-1}=x_{n-1}\right]
$$

- If in addition, $\mathbb{P}\left[X_{n}=x \mid X_{n-1}=y\right]=\mathbb{P}\left[X_{n}=x \mid X_{n-1}=y\right]$ for all $n, m \in \mathbb{N}_{0}$, then the Markov chain is said to be time-homogeneons ((or homogeneous Morkoor $\left.\begin{array}{l}\text { chain or HMC }\end{array}\right)$
- HIC $\left(x_{n}\right)$ has associated transition probability matrix $P=\left\{P_{i j},\right\}_{i ; j \in} \in x$, where

$$
P_{i j}=\mathbb{P}\left[X_{n+1}=i \mid X_{n}=j\right]
$$

- Properties of $P \equiv i) P_{i j} \geqslant 0 \forall_{i, j} \in X^{2}$

$$
\text { ii) } \sum_{j \in X} P_{i j}=1 \forall i \in X
$$

Any matrix with these properties is a stochastic matrix (note though that X may be finite or countably infinite)

- We want to study X_{n} starting from some $X_{0} \in X$ Some notation (all vectors are column vectors)

$$
\text { - } \pi_{n}=\left(\pi_{n}(i)\right) i \in X, \sum_{i \in X} \pi_{n}(i)=1 \equiv \text { Distribution of } X_{n}
$$

$\Pi_{0} \equiv$ Starting distribution of chain

$$
\begin{aligned}
& \text { - } P_{i j}(m)=\mathbb{P}\left[X_{n+m}=j \mid X_{n}=i\right] \equiv m \text {-step transition matrixix } \\
& \Rightarrow \text { By definition, } \Pi_{n}^{\top}=\Pi_{0}^{\top} P(n), \Pi_{n+m}^{\top}=\Pi_{n}^{\top} P(n)
\end{aligned}
$$

(Chapman-Kolmoyovov Eqns) For an HMC, we have

$$
\begin{aligned}
& P(n)=P^{n} \quad \forall n \in \mathbb{N}_{0} \text {, and hence } \\
& \quad \prod_{n+m}^{T}=\prod_{n}^{T} P^{m} \quad \forall n, m \in \mathbb{N}_{0}
\end{aligned}
$$

- The Chapman-Kolmogoror equs give a linear a hebraic view of an HMC. An alternate probabilistic view is to define it in terms of a recurrence relation (Recurrence $\left.V_{\text {ie of }} H M C\right)$ - Let $\left(Z_{n}, n \in \mathbb{N}\right)$ be an iid sequence of random variables in some space F, and let x be a computable space Given any function $f: X_{x} F \rightarrow X$, and $x_{0} \in X$, the recurrence relation

$$
x_{n+1}=f\left(x_{n}, z_{n+1}\right)
$$

$$
\text { defines a } H M C\left(x_{n} ; n \in \mathbb{N}_{0}\right)
$$

Eg (Simple random walk) $-\left(x_{n} ; n \in \mathbb{N}_{0}\right)$ on $X=\mathbb{Z}$ is called a simple random walk if $X_{0} \sim T_{0}$, and

- (Matrix view) Let $P=\left(P_{i j}\right)$ where $P_{i, i+1}=P, P_{i, i-1}=1-P$ and $P_{i j}=0$ if $j \notin\{i-1, i+1\}$. Then $X_{n} \sim \pi_{n}$ with $\pi_{n}^{\top}=\pi_{0}^{\top} P^{n} \forall_{n}$ - (Rearvence vies) Let $Z_{n}=\left\{\begin{array}{ccc}1 & \text { wp } \\ -1 & \text { wp }\end{array}\right.$. . The . $X_{n+1}=X_{n}+Z_{n+1}$
(The RW is said to be symmetric if $p=1 / 2$)
- Any stochastic matrix $P \equiv f_{n} f\left(x_{n}, z_{n+1}\right)$ with $z_{n+1} \cup \cup[0,1]$
(If $X_{n}=i$, then choose $X_{n+1}=j$ if $\sum_{k=0}^{j-1} P_{i k} \leqslant Z_{n+1}<\sum_{k=0}^{j} P_{i k}$)
Any $f\left(X_{n}, z_{n+1}\right)$ for any $Z_{n+1} \in F \equiv$ stock matrix P (Set $\left.P_{i j}=\mathbb{P}\left[f\left(X_{n}, z_{n+1}\right)=j \mid X_{n}=i\right]\right)$

Finally, any MC can also be viewed as a randan walk on an edge-weighted directeg graph (Random Walk View of HMC) - Consider an edge-weighted directed graph $G(V, E, W)$ with $V=X,(i, j) \in E$ if $P_{i j}>0$, and $W_{i j}=P_{i j}$. Then HMC $\left(x_{n i n \in N}\right)$ corresponds to a random walk on G, where the walk transitions from node i to a neighboring node j with proba bility Wig. The graph $G(V, E, W)$ is called a transition $\begin{array}{r}\text { diagram }\end{array}$ diagram.
Transition diagram for the simple random walk

Examples of Markov Chains

- Simple Random Walk $-X_{n}=X_{n-1}+Z_{n}, Z_{n} \sim\left\{\begin{array}{l}+1 \\ -1 \\ -1 \\ \mathrm{wp}\end{array} \mathrm{p}^{1 / 2}\right.$

- Markov Modulated Switch -

$$
\begin{aligned}
& X_{n}=\left(X_{n-1}+Y_{n}\left(X_{n-1}\right) \bmod 2, Y_{n}(x) \sim \operatorname{Ber}(p) ; x=0\right. \\
& \operatorname{Ber}(q) ; x=1
\end{aligned}
$$

- (Galton-Watson $)$ Branching Process $-X_{n}=\sum_{i=1}^{X_{n-1}} Z_{n, i}, Z_{n, i} \sim\left\{p_{k}\right\}_{k \in \mathbb{N}_{0}}$

- Gambler's Ruin $\quad X_{n}=\left\{\begin{array}{l}X_{n-1}+Z_{n} ; X_{n-1} \notin\{0, b\}, Z_{n} \sim \text { lop } \\ X_{n-1} ; X_{n} \in\{0, b\}\end{array}\right.$
- Deterministic Monotone Markov Chain $X_{n}=X_{n-1}+1$

$$
(0)^{1}(1)^{1}(2) \longrightarrow \ldots
$$

(Useful for counterexamples)

- Random Walk on $G(V, E)$ - Let $A=\left(A_{i i}=\mathbb{Y}\left\{\left(G_{1, j}\right) \in E\right\}\right)$ be the adjacency matrix of G, and $D^{-1}=\operatorname{diag}(1 / \operatorname{deg}(i))$, were $\operatorname{deg}(i)=\sum_{j} A_{i j}$. Then the Phon G is gwen by the transition matrix $\quad P=D^{-1} A$

Some quantities associated with Markov chains

- Hitting Time - $\left\{X_{n}\right\}_{n \in N_{0}}$ Mark oo chain on X. For any set of states $B \subseteq S$, hitting time $\bar{T}_{B}=\inf \left\{n \in \mathbb{N}_{0} \mid X_{n} \in B\right\}$ (for some X_{0}) ($\tau_{B}=0$ if $X_{0} \in B, \tau_{B} \triangleq+\infty$ if $X_{n} \notin B \quad \forall_{n}$)
- (First) Visit Time - For any state $j \in X$, its first visit time is defined as $T_{j}(1)=\inf \left\{n \in \mathbb{N} \mid X_{n}=j\right\}$, and its $k^{\text {th }}$ visit time is defined as $T_{j}(k)=$ inf $\left\{n>T_{j}(k-1) \mid x_{n}=j\right\}$
- Return Time - For any state $j \in X$, its return time is defined as $\tau_{j j}=\inf \left\{n \in\left\{2,-j \mid X_{n}=j, X_{0}=j\right\}\right.$
- Cover Time - For any MC an X, cover tine $\tau_{\text {cover }}=\inf ^{\prime}\left\{n \in \mathbb{N} \mid n \geqslant T_{j}(1) \theta_{j} \in X\right\}$

Classification of States (Probabilistic)

- A state $j \in \mathcal{X}$ is said to be
- recurrent if $\mathbb{P}\left[\bar{\tau}_{j j}<\alpha\right]=1$
$-\left[\begin{array}{l}\text { positive recurrent if } \mathbb{E}\left[\tau_{j j}\right]<\infty \\ \text { null recurrent if recurrent but not positive recurrent }\end{array}\right.$
- transient if $\mathbb{P}\left[\bar{\tau}_{j j}<\infty\right]<1$

We will Inter see conditions to determine This classification

Classification of States (topological)
The states of an HMC can also be classified by

- Real $(i j) \in E$ iff $P_{i j}>0$. State j is said to be accessible from state i if \exists directed path $i \rightarrow j$ (in probabilistic terms, j is accessible from i if $\mathbb{P}\left[\tau_{j}<\alpha \mid X_{0} i\right]<\alpha$, ie, $\exists M>0$ st. $\left.P_{i j}(M)=\left(P^{M}\right)_{i j}>0\right)$
- States i and j communicate if j is accessible from i, and i is accessible from j. This is dented as $i \leftrightarrow j$, and is an equivalence relation (ie, $i \leftrightarrow i, i \leftrightarrow j \Leftrightarrow j \leftrightarrow i$, and $i \leftrightarrow j, j \leftrightarrow k \Rightarrow i \leftrightarrow k$), and it partitions χ into disjoint equivalence classes called communicating classes
- In terms of the transition diagram, a communicating class \Longleftrightarrow a strongly connected component of G
- A set $C \subseteq X$ is said to be
- closed if $\sum_{j \in C P} P_{i j}=1 \forall i \in C$
- irreducible if $i \longleftrightarrow j \forall i, j \in C$ (ie, $; j \in$ a comm ${ }^{g}$ class)

The period of a state $i \in \mathcal{X}$ is defined as $\operatorname{gcd}\left\{n \mid p_{\text {i }}(n)>0\right\}$
State i is said to be aperiodic if it has period 1
Thu (Class properties) $\forall i, j \in \mathcal{X}$ s.t $i \longleftrightarrow j$
i) i and j have the same period
ii) i is transient iff j is transient
iii) i is null recurrent if j is null recurrent
iv) i is Positive recurrent iff j is positive recurrent

Thm (Decomposition) For any MC, X can be partitioned uniquely as

$$
X=T \cup C_{1} \cup C_{2} \cup
$$

where T is the set of transient states, and C_{i} are irreducible, chord se's

- Every finite $M C$ has at least one C irreducible closed

Pictorially we have the following

- Any finite MC starting in Teventually hits some C, and then staystlere - We will now concentrate on understanding a singe class C.

Thu - Let P be the transition matrix of an irreducible Markov chain (ie., X has a singh mmuniating class) with period d wen $\forall i, j \in X, \exists m \geqslant 0$ and $n_{0} \geqslant 0$ (possibly depending on $i, j)$ sot.

$$
P_{i j}(m+n d)>0 \forall n \geqslant n_{0}
$$

- In other words, for an irreducible MC, the matrix $P^{n_{0}}$ eventually has all nonzero elements. Does it however converge?

Stationary Distribution of an HMC

- A vector \mathbb{T} is said to be a stationary distribution of an $H M C$ if $\pi(j) \geqslant 0 \forall j \in X, \sum_{j \in X} \pi(j)=1$ and

$$
\pi^{\top}=\pi^{\top} P
$$

- (Global Balance) Alternately, Π can be defined by the equs

$$
\pi(i)=\sum_{j \in X} \pi(j) P_{j i}
$$

More generally, for any set $S \subseteq X\left(\right.$ and $\left.S^{c}=x \mid s\right)$, we have

$$
\begin{aligned}
\sum_{i \in s} \sum_{j \in s^{c}} \pi(i) P_{i j} & =\sum_{j \in s^{c}} \sum_{i \in s} \pi(j) P_{j i} \\
\text { - If } \pi_{t}=\pi \Rightarrow \pi_{t+s} & =\pi \quad \forall s \geqslant 0
\end{aligned}
$$

$E g-P=\left(\begin{array}{cc}1-\alpha & \alpha \\ \beta & 1-\beta\end{array}\right) \Rightarrow \pi=\left(\begin{array}{ll}\frac{\beta}{\alpha+\beta} & \frac{\alpha}{\alpha+\beta}\end{array}\right)^{\top} \quad C^{1-\alpha} \alpha i(2) P^{1-\beta}$
Eg - For any MC P, its Lazy Markov chain is the one where at each step, we do nothing with prob α, else run P. Denting its transition prob matrix as Q, we have

$$
Q=\alpha I+(1-\alpha) P
$$

- Let Π be a stationary dist of P. Then $\Pi^{\top} Q=\pi^{\top}$ Thus a lazy chain has the same stationary dist for any α.
- For any indexed collection of rues $\left(X_{t} ;, t \in \mathbb{N}\right), a$ filtration $\left(\mathcal{F}_{t}\right)_{t \in N}$ is a collection of σ-fields sit. $\mathcal{F}_{t}=\sigma\left(X_{t} ; t^{\prime} \leqslant t\right)$. In other words, \mathcal{F}_{t} is made up θf all the events of the form $\left\{X_{t^{\prime}} \leqslant a, t^{\prime} \leqslant t\right\}$.
- An covert A is said to be aclapted to F_{t} if \exists a function Φ sit. $\mathbb{L}_{A}(\omega)=\phi\left(X_{t^{\prime}}(\omega) ; t^{\prime} \leqslant t\right)$ For any $\left(X_{t}, t \in \mathbb{N}\right)$ with associated filtration F_{t}, a stopping time \bar{T} is a \mathbb{N}-valued $r . v$ for which $(\tau \leqslant t)$ is adapted to $\Psi_{t} \forall t$
-ie., I is a nom-anticipative random time
Eg - First visit to x is a stopping time Last visit to x is not a stopping time
- The (Strong Markov Property) For any HMC with transition matrix P, and any stopping time P
i) Given $X_{\tau}=i$, process before and after τ are independent
ii) Given $X_{\tau}=i$, process after τ is an $H M C$ with $\hat{X}_{0}=i$,

Th (Existence and Uniqueness of π for irreducible chains)
If X comprises of a single irreducible, positive recurrent class then there the equation $x^{\top} P=x^{\top}$ has a unique positive sols unto multiplicative constants. Moreover, the unique stationary distr obeys $\Pi(x)=\frac{1}{\mathbb{E}\left[\tau_{x}\right]}$
Pf - We will show this by constructing a soln $\widetilde{\pi}$

- Consider any $z \in X$. Define $\mathbb{E}_{z}[\cdot] \triangleq \mathbb{E}\left[\cdot \mid X_{0}=z\right]$ Let $\tilde{\pi}(y)=\mathbb{E}_{z}[\#$ of visits to y before returning to $z]$

$$
\begin{aligned}
& =\lim _{T \rightarrow \infty} \mathbb{E}_{z}\left[\sum_{t=0}^{T} 11\left\{x_{t}=y, \tau_{z z}>t\right\}\right] \\
& =\sum_{t=0}^{\infty} \mathbb{P}_{z}\left[X_{t}=y, \tau_{z z}>t\right]
\end{aligned}
$$

- Since chain is positive recurrent, we have $\mathbb{E}\left[\tau_{z z}\right]<\propto \forall z$

$$
\Rightarrow \widetilde{\pi}(y) \leqslant \sum_{t=0}^{\infty} \mathbb{P}_{z}\left[\tau_{z z}>t\right]=\mathbb{E}\left[\tau_{z z}\right]<\infty
$$

- Now to check $\widetilde{\Pi}$ is a stationary dist, consider

$$
\sum_{x \in X} \widetilde{\pi}(x) P_{x y}=\sum_{x \in x}\left[\sum_{t=0}^{\infty} \mathbb{P}_{z}\left[X_{t}=x,\left[T_{z z} \geqslant t+1\right]\right] P_{x y}\right.
$$

for some $y \in X$

- Let $\tilde{\tau}_{t}=\sigma\left(x_{0}, x_{1}, \ldots, x_{t}\right)$. We have

$$
\begin{gathered}
\left\{\tau_{z z} \geqslant t+1\right\}=\left\{\tau_{z z}>t\right\} \in \widetilde{X}_{t} \\
\Rightarrow \mathbb{P}_{z}\left[X_{t}=x, X_{t+1}=y, \tau_{z z} \geqslant t+1\right]=\mathbb{P}_{z}\left[X_{t}=x, \tau_{z z} \geqslant t_{+1}\right] P_{x y}
\end{gathered}
$$

- By Jonellis the, we can interchange \sum_{i} in $(*)$

$$
\begin{aligned}
& \Rightarrow \sum_{x \in x} \tilde{\pi}(x) P_{x y}= \sum_{t=0}^{\infty} \sum_{x \in x} \mathbb{P}_{z}\left[x_{t}=x, x_{t+1}=y, \tau_{z z} \geqslant 1 t+1\right] \\
&=\left.\sum_{t=1}^{\infty} \mathbb{P}_{z}\left[x_{t}=y, \tau_{z z} \geqslant t\right] \quad \begin{array}{c}
\text { By M Motor } \\
\text { property }
\end{array}\right) \\
&= \delta_{1}(y) \\
&-\mathbb{P}_{z}\left[x_{0}=y, \tau_{z z}>0\right] \\
&+\underbrace{\delta_{z}}_{\sum_{t=1}^{\infty} \mathbb{P}_{z}\left[x_{t}=y, \tau_{z z}=t\right]}
\end{aligned}
$$

Now if $y \neq z$, then $X_{0}=X_{t_{2}}=t$ and $\delta_{1}=\delta_{2}=0$. If $y=z$, then $X_{0}=X_{\tau_{2 z}}=z \Rightarrow \delta_{1}=\delta_{2}=1$
Thus we have $\sum_{x \in X} \tilde{\pi}(x) P_{x y}=\widetilde{\pi}(y) \quad \forall y \in X$

- Finally, to make $\tilde{\pi}$ a probability measure, we can set $\Pi(x)=\frac{\pi(x)}{\pi[\tau]}$. In particular, we have $\Pi(x)=1 / \mathbb{E}\left[\tau_{x x}\right]>0$ since $\mathbb{E}\left[\tau_{r x x}\right]<\propto \forall x$
- Now we wail to show that $\Pi(x)=1 / \mathbb{E}\left[\tau_{z_{2}}\right]$ is unique For this, let $\widehat{\pi}$ be another stationary dist. We know that if $X_{0} \sim \pi$, then $X_{t} \sim \pi \forall t \geqslant 0$ - Now suppose $X_{0} \sim \tilde{\pi}$. For any $x \in X$, we have

$$
\begin{aligned}
\tilde{\Pi}(x) \mathbb{E}\left[\tau_{x x}\right] & =\mathbb{P}\left[X_{0}=x\right] \sum_{t=1}^{\infty} \mathbb{P}\left[\tau_{x x} \geqslant t\right] \\
& =\sum_{t=1}^{\infty} \mathbb{P}\left[T_{x}(2) \geqslant t \mid X_{0}=x\right] \mathbb{P}\left[X_{0}=x\right] \\
& =\sum_{t=1}^{\infty} \mathbb{P}\left[T_{x}(2) \geqslant t, X_{0}=x\right]
\end{aligned}
$$

- Define $a_{n}=\mathbb{P}\left[X_{t} \neq x\right.$ for $\left.0 \leqslant t \leqslant n\right], a_{0}=\mathbb{P}\left[X_{0} \neq x\right]$
- Note that $\left\{x_{t} \neq x\right.$ for $\left.0 \leq t \leq n\right\} \subseteq\left\{x_{t} \neq x\right.$ for $\left.0 \leq t \leq n-1\right\}$

$$
\Rightarrow a_{n} \leqslant a_{n-1} \leqslant a_{n-2} \leqslant \ldots
$$

- Moreover if $X_{t} \sim \hat{\pi} \forall t$, then we also have

$$
\mathbb{P}\left[X_{t \neq x} \text { for } 0 \leqslant t \leqslant n\right]=\mathbb{P}\left[X_{t} \neq x \text { for } 1 \leqslant t \leqslant n+1\right]
$$

- Now consider $b_{n}=\mathbb{P}\left[T_{x}(2) \geqslant n, X_{0}=x\right], b_{1}=\mathbb{P}\left[T_{x}(2) \geqslant 1, X_{0}=x\right]=\mathbb{P}\left[X_{0}=x\right]$

Then we have $\hat{\prod}(x) \mathbb{E}\left[\tau_{x \pi}\right]=\sum_{n=1}^{\infty} b_{n}=\mathbb{P}\left[x_{0}=x\right]+\sum_{n=2}^{\infty} b_{n}$

Moreover $b_{n}=\mathbb{P}\left[X_{t} \ddagger x \quad \forall 1 \leqslant t \leq n-1, X_{0}=x\right] \quad \forall n \geqslant 2$

$$
\begin{aligned}
& =\mathbb{P}\left[X_{t} \neq x \forall 1 \leq t \leq n-1\right]-\mathbb{P}\left[X_{t} \neq x \quad \forall 0 \leq t \leq n-1\right] \\
& =\mathbb{P}\left[X_{t \neq x} \forall 0 \leq t \leq n-2\right]-\mathbb{P}\left[X_{t \neq x} \quad \forall 0 \leq t \leq n-1\right]
\end{aligned}
$$

$$
=a_{n-2}-a_{n-1}
$$

where the last line uses that $X_{t} \sim \hat{\pi} \forall t$

- Thus $\hat{\pi}(x) \mathbb{E}\left[\tau_{n x}\right]=\mathbb{P}\left[x_{0}=x\right]+\sum_{n=2}^{\infty}\left(a_{n-2}-a_{n-1}\right)$

$$
=\mathbb{P}\left[X_{0}=x\right]+\mathbb{P}\left[X_{0} \neq x\right]-\lim _{n \rightarrow \infty} a_{n}
$$

Also $\lim _{n \rightarrow \alpha} a_{n}=\lim _{n \rightarrow \infty} \mathbb{P}\left[x_{t} \neq x \quad \forall 0 \leqslant t \leqslant n\right]=1-\mathbb{P}\left[\tau_{z c}<\alpha\right]=0$ as tho Minis positive recurrent $\forall x \in X$

$$
\Rightarrow \hat{\Pi}(x) \mathbb{E}\left[\tau_{x x}\right]=1 \quad \forall x \in X, \hat{\pi}_{\text {stationary }}
$$

Thus $\pi(x)=1 / \mathbb{E}\left[\tau_{x x}\right]$ is the unique stationary dist
Thus, for an irreducible, positive recurrant $M C$, we have that $\Pi^{\top} P=\Pi^{\top}$ has a unique solution s.t. $\Pi(x)>0 \forall x \in \mathcal{X}$, and $\sum_{x \in x} \pi(x)=1$. Moreover Π satisfies $\pi(x)=1 / \mathbb{E}\left[\tau_{x x}\right]$

Some useful facts + roadmap
i) How do we check if a $M C$ is positive recurrent? (irreducibility is easier to check)

- Directly check $\mathbb{E}\left[\tau_{r i n}\right]<\infty$ for sone $x \in X$
- Finite-state, irreducible chains (via Perron Firoberiusthm)
- Fostor-Lyapunov criterion - Potential fr argument'
ii) What does π look like? When is it easy to compute?

Eg (Doubly Stochastic Matrix) If P is $n_{x n}$, ireacuicbe, and $\sum_{x \in x} P_{x y}=1$ (ie, each column sum is 1), then $\Pi^{\prime}=\left(\frac{1}{n} \frac{1}{n} \ldots \frac{1}{n}\right)^{\top}$
Pf. Check $\pi^{\top} P=\pi^{\top}$. By uniqueness of π, we ave dove!

- Ampere useful condition - reversibility
iii) When does $\Pi_{n} \rightarrow \pi$ for any staving state Π_{0}
- Convergence the
iv) What can we say about time-aceroges of functions of an MC? - MC Ergodic the
v) How fast is this convergence? How can we quantify it in terms of the MC properties?
- Mixing times of $M C_{s}$
- Finite MC and Perron-Fröbenius
- Finding TI for an MC involves solving $\Pi^{\top} P=\Pi^{\top}$. Now for X finite (so say $P \equiv n \times n$), this is now essentially same as computing a left eigenvector with eigenvalue 1. Our previous the says this always exists and is unique if $M C$ is irreducible and positive recurrent. We next see this specialized to finite P
- First, we note that existence and unique ness of π does not imply convergence.
$E g-$ Let $x=\{1,2\}$ and $P_{12}=P_{21}=1$. Let $\pi_{0}=\binom{1}{0}$ $\Rightarrow \Pi_{t}=\binom{1}{0}$ if t is even, add $\Pi_{t}=\binom{0}{1}$ if t is odd. Clearly $\pi_{t} \nrightarrow \Pi$ (even though $\Pi_{t}^{T}=P t \Pi_{0}^{\top}$, and Π is unique)
- The problem in the example is that the MC is periodic. Its easy to see that this will always lead to non convergence. What if MC is aperiodic?
Def- A nonnegative square matrix A is said to be primitive iff $\exists k$ s.t $A^{k}>0$.
- Primitive $\Leftrightarrow P$ is irreducible and aperiodic
- For any matrix A its characteristic polynomial $f_{A}(\lambda)$ is defined as $f_{A}(\lambda)=\operatorname{det}(A-\lambda I)$.
- The eigenvalues $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ of A are the roots (possibly complex) of $f_{A}(\lambda)$
- For any e-value λ_{i} of A
- Its algebraic multiplicity $\mu_{A}(\lambda i)$ is defined as $\mu_{A}\left(\lambda_{i}\right)=$ largest integer k s.t $\left(\lambda-\lambda_{i}\right)^{k}$ divides $f_{A}(\lambda)$
- Its right e-vectors $E_{i}^{R}=\left\{v \mid\left(A-\lambda_{i} I\right) v=0\right\}$
- Its left e-vectas $E_{i}^{L}=\left\{v \mid v\left(A-\lambda_{i} I\right)=0\right\}$
- Its geometric multiplicity $\gamma_{A}\left(\lambda_{i}\right) \triangleq$ dimension of E_{i}^{R} (ie. \# of linearly independent right e-vectors)

$$
\cdot 1 \leqslant \gamma_{A}\left(\lambda_{i}\right) \leqslant \mu_{A}\left(\lambda_{i}\right) \leqslant n
$$

Thm (Perron-Frobenius) Let A be a non-negative primitive $n \times n$ matrix. Then \exists real e-value λ_{1} st. i) $\lambda_{L} \in \mathbb{R}$
ii) $\mu_{A}\left(\lambda_{1}\right)=\gamma_{A}\left(\lambda_{1}\right)=1$
iii) $\lambda_{1}>0$ and $\lambda_{1}>\left|\lambda_{j}\right| \forall$ e-values j
iv) \exists left and right e-vectors corresponding to λ_{1} st $u_{1}^{\top} v_{1}=1$

- Corollary - If Pis the transition matrix of an irreducible M

STEM \equiv second largest e-value modulus
ii) If P is a periodic (ie, primitive), then $|\lambda|_{2}<1$ $\binom{$ If P has period, then $\lambda_{1}=\omega^{0}, \lambda_{2}=\omega^{1}, \ldots, \lambda_{d}=\omega^{d-1}}{$ where $\omega=e^{2 \pi i / d}$ are the complex roots of 1}
iii) We can choose $v_{1}=11, u_{1}=\pi$ and hence

$$
P^{t}=\| \pi^{T}+O\left(t^{m_{2}-1}\left|\lambda_{2}\right|^{t}\right)
$$

where $m_{2}=\mu_{A}\left(\lambda_{2}\right)$

- Thus $\pi_{0}^{T} P^{t}=\pi^{T}+\sum_{j=2}^{n} \lambda_{j}^{t} \pi_{0}^{T}\left(v_{j} u_{j}^{\top}\right)$

$$
\left.=O\left(t^{m_{2}-1} \mid \lambda_{2}\right)^{t}\right)
$$

Eg- $X=\{1,2\}, \quad P=\left(\begin{array}{cc}1-\alpha & \alpha \\ \beta & 1-\beta\end{array}\right)$

$$
\Rightarrow f_{p}(\lambda)=(1-\alpha-\lambda)(1-\beta-\lambda)-\alpha \beta, \lambda_{1}=1, \lambda_{2}=1-\alpha-\beta
$$

Also $\Pi=\frac{1}{\alpha+\beta}(\beta \alpha)^{\top}$, and we have

$$
P^{n}=\frac{1}{\alpha+\beta} \underbrace{\left(\begin{array}{ll}
\beta & \alpha \\
\beta & \alpha
\end{array}\right)}_{\|^{\top} \pi}+\frac{(1-\alpha-\beta)^{n}}{\alpha+\beta} \underbrace{\left(\begin{array}{cc}
\alpha & -\alpha \\
-\beta & \beta
\end{array}\right)}_{V_{2}^{\top} u_{2}}
$$

Reversibility \& Detailed Balance

- Given MC P with stationary dist M, define new matrix Q as $\left.\pi L_{i}\right) q_{i j}=\pi(j) p_{j i} \forall i, j \in X$
Claim - Q is a stochastic matrix and $\pi^{\top} Q=\pi^{\top}$

$$
\begin{aligned}
& \text { Pf } \quad q_{i j}=\frac{\pi(j) p_{j i}}{\pi(i)} \geqslant 0 \forall i j \\
& \text { Also } \sum_{j \in x} q_{i j}=\frac{1}{\pi(i)} \sum_{j \in x} \pi(j) p_{j i}=\frac{\pi(i)}{\pi(i)}=1 \\
& \text { Finally }\left(\pi^{\top} Q\right)_{j}=\sum_{i \in x} \pi(i) \cdot q_{i j}=\sum_{i \in x} \pi(j) P_{j i}=\pi(j) \\
& \Rightarrow \Pi^{T} Q=\pi^{T}
\end{aligned}
$$

- Q is the distribution of the 'time-reversed' chain. In particular, an MC P is said to be reversible inf $Q=P$.
- The equations T(i) $p_{i j}=\pi(j) q_{j i} \quad \forall i, j$ are called the detailed balance equations. They are particularly useful as they give a surprising way to compute T!

Ohm (Kelly's Lemma) Let P be a stochastic matrix on X. Suppose we are given Π distrib on X, and matrix Q sit.
i) Q is stochastic, ie, $\sum_{j \in x} q_{i j}=1$
ii) Detailed balance holds, ie, $\Pi(i) q_{i j}=\pi(j) p_{j i} \forall i, j$ Then π is a stationary matrix of P
Pf - For any $i \in X$ we have

$$
\begin{aligned}
\sum_{j \in x} \pi(j) P_{j i} & =\sum_{j \in x} \pi(i) q_{i j} \\
& =\pi(i) \sum_{j \in x} q_{i j}=\pi(i)
\end{aligned}
$$

Thus π satisfies global balance $\Rightarrow \pi^{\top} P=\pi$
Corollary - For any MCP, if I distribation Mist.

$$
\pi(i) P_{i j}=\pi(j) P_{j i} \quad \forall i, j
$$

Then P is reversible and Π is a stationary distribution of P

The Markov Chain Ergodic Theorem

- We now want to look at 'Iong-run averages' along sample paths of a MC, ie, $\frac{1}{T} \sum_{t=1}^{T} g\left(X_{t}\right)$
- If X_{t} were aid, this is equal to $E\left[g\left(X_{1}\right)\right]$. Can we do something similar for MCs? The ergodic the asserts that if the MC is irreducible and positive recurrent, then in the limit $T 7 \alpha$, we can equate the long-run time average with $\mathbb{E}_{\pi}^{\prime}[g(x)]$, the space average under the stationary distribution
Proposition (Convergence of Canonical Measures) Let $\left(X_{n}, n \in \mathbb{N}\right)$ be an irreducible recurrent (oundbenull) HMC, and let for any state $z \in X$, define the canonical measure n_{z} as $n_{z}(x)=\mathbb{E}_{z}\left[\sum_{t \geqslant 1} \mathbb{1}_{\left\{x_{t}=x\right\}} \mathbb{U}_{\left.\left\{t \leq T_{z}(2)\right\}\right]} \quad \forall x \in X\right.$ where $T_{z}(2)$ is the sean visit time to z. Forany $t \geqslant 0$, define $\nu_{z}(t)=\sum_{k=0}^{+} \mathbb{1}\left\{x_{k}=z\right\}$, and consider any $f n f$ st. $\left.\sum_{x \in X}|f(x)| n_{2}(x)\right|_{T}<\infty$. Then for any starting distr Π_{0}

$$
\lim _{T / \alpha} \frac{1}{\nu_{z}(T)} \sum_{t=1}^{T} f\left(X_{t}\right)=\sum_{x \in X} f(x) n_{z}(x) \quad \text { ass }
$$

Prof Prop: Let $T_{z}(1), T_{z}(2), \ldots$ be the successive returns to state Z, and define $U_{k}=\sum_{t=T_{z}(k)+1}^{T_{z}(k+1)} f\left(X_{t}\right)$. By the strong Markov property, $\left\{U_{k}\right\}$ is an ind sequence

- Now if $f \geqslant 0$, we have (by Strong Markov)

$$
\begin{aligned}
& \mathbb{E}\left[U_{k}\right]=\mathbb{E}_{z}\left[\sum_{t=1}^{\prime T_{2}(t)} f\left(x_{t}\right)\right] \\
& =\mathbb{E}_{z}\left[\sum_{t=1}^{T(1)} \sum_{x \in x} f(x) \mathbb{1}_{\left\{y_{t}=x\right\}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{x \in X} f(x) n_{z}(x)<\infty \text { by assumption }
\end{aligned}
$$

- By the SLLN, we here $\lim _{N / \propto} \frac{1}{N} \sum_{k=1}^{N} U_{k}=\sum_{x \in x} f(x) n_{z}(x)$ as

$$
\Rightarrow \quad \lim _{N \uparrow \alpha} \frac{1}{N} \sum_{t=T_{z}(1)+1}^{T_{z}(N+1)} f\left(X_{t}\right)=\sum_{x \in x}^{N / \alpha} f(x) n_{z}(x) \quad a . S
$$

- Now $\operatorname{since} T_{z}\left(\nu_{z}(T)\right) \leqslant T<T_{z}\left(\partial_{z}(T)+1\right)$, we have

Since chain is recurrent, $\lim _{T \rightarrow \alpha} D(T)=\alpha$ and thus all three terms above converge to $\sum_{x \in X} f(z) \eta_{z}(2)$ as $T \uparrow a$.

- For general f write $f=f^{-}-f^{-}$, where $f^{ \pm}=\max (0, f), f^{-}=\max (0, f)$. Since $\sum|f(x)| n_{2}(x)<\alpha \Rightarrow$ each term is well defied

Tho (Markov chain Ergodic The $) \operatorname{Let}\left(X_{n}, n \in \mathbb{N}\right)$ be an irreducible, positive recurrent Markov chain with stationary distribution \mathbb{T}. For any $f: x \rightarrow \mathbb{R}$ st. $\sum_{x \in x}|f(x)| \pi(x)<\alpha$, and any initial distr $X_{0} \sim \pi_{0}$

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} f\left(x_{t}\right)=\sum_{x \in x} f(x) \pi(x) \quad \text { ass. }
$$

Pf - Apply the convergence result for canonical measures to $f(x)=1$. Since $M C$ is positive recurrent, we have $\sum_{x \in x} f(x) n_{z}(x)=\sum_{x \in x} n_{z}(x)=\mathbb{E}\left[\bar{\tau}_{z z}\right]<x$. Thus $\lim _{T \uparrow \propto} \frac{1}{D_{z}(T)} \sum_{t=1}^{T} f\left(x_{t}\right)=\lim _{T \uparrow \infty}^{x \in x} \frac{T}{D_{z}(T)}=\sum_{x \in x}^{x \in x} n_{z}(x)$
Now for any f, if $\sum_{x \in x}|f(x)| \pi(x)<\alpha \Rightarrow \sum_{x \in x}|f(x)| n_{z}(x)<\alpha$ as well, since $T(x) \propto n_{z}(x)$ for any Z. Thus we have

$$
\begin{aligned}
\lim _{T \uparrow \alpha} \frac{\sum_{t=1}^{T} f\left(x_{t}\right)}{T} & =\lim _{T T \alpha}\left(\frac{D_{z}(T)}{T}\right)\left(\frac{\sum_{t=1}^{\top} f\left(x_{t}\right)}{D_{z(T)}}\right) \\
& =\frac{\sum_{x \in x} f(x) n_{z}(x)}{\sum_{x \in x} n_{z}(x)}
\end{aligned}
$$

From before, we know that for a postie recurrent, irreducible $M C$, we have $\frac{n_{z}(x)}{\sum_{x \in x} n_{z}(x)}=\Pi(x) \forall x, z$. This completes the proof.

Testing for Positive Recurrence - Lyapunov Functions

- We finally present a way to test for positive recurrence. The main idea is to map all states to a 1-dimensional potential function, which we can then analyze as a birth-death chain.
Thu (Foster-Lyapunov Condition) Given irreducible MC P on com table state-space X, suppose $]$ function $h: X \rightarrow \mathbb{R}$ sit.
i) $h(i) \geqslant 0 \forall i \in x \quad \checkmark \quad$ LyapunouFunction
ii) $\sum_{k \in x} P(i, k) h(k)<\alpha \forall i \in x^{\infty} \in \mathbb{E}\left[h\left(X_{n+1}\right) \mid X_{n}=i\right]<\alpha \forall i$
iii) For sore $\varepsilon>0$ and finite set F, we have

\[

\]

Then the MC is positive recurrent.
$\begin{aligned} \bullet \mathbb{E}\left[h\left(x_{n+1}\right) x_{n}-i\right] & <h(i)-\varepsilon \\ & \forall i \notin F\end{aligned}$
Pf - Let $\bar{\tau}=$ return time to $F, Y_{t}=h\left(X_{t}\right) \rrbracket\{t<\tau\}$

- By prop (iii), we have $\mathbb{E}\left[h\left(x_{t+1}\right) \mid x_{t}=i\right] \leq h(i)-\varepsilon \forall i \notin F$
prop (ii) implies $\mathbb{E}\left[h\left(X_{t+1}\right) \mid X_{t}=i\right]<\infty \forall i \in x$

$$
\begin{aligned}
& \Rightarrow \forall x \in F, \text { we have } \\
& \begin{aligned}
\mathbb{E}_{x}\left[y_{t+1} \mid x_{0}^{t}\right] & =\mathbb{E}_{x}\left[y_{t+1} \mathbb{1}_{\{t<\tau\}} \mid F_{t}\right]+\widetilde{\mathbb{E}_{r}\left[y_{t+1} \|_{\{t>\tau\}} \mid F_{t}\right]} \\
& \leqslant \mathbb{E}_{x}\left[h\left(x_{t+1}\right) \mathbb{1}_{\{t<\tau\}} \mid F_{t}\right] \\
& \sigma\left(x_{0}, x_{1}, \ldots, x_{t}\right) \\
& =\mathbb{1}\{t<\tau\} \mathbb{E}_{x}\left[h\left(x_{t+1}\right) \mid F_{t}\right] \\
& \leqslant \mathbb{I}_{\{t<\tau\}} h\left(x_{t}\right)-\varepsilon \mathbb{1}_{\{t<\tau\}}
\end{aligned}
\end{aligned}
$$

where the last \leqslant follows from the fact that $X_{t} \notin F$ if $t<\tau$

Thus we have $\mathbb{E}_{x}\left[y_{t+1}\right] \leqslant \mathbb{E}_{x}\left[y_{t}\right]-\varepsilon \mathbb{P}_{x}[\tau>t]$

- Now since Y_{t} is non-negative, we iterate to get

$$
0 \leqslant \mathbb{E}_{x}\left[y_{t+1}\right] \leqslant \mathbb{E}_{x}\left[y_{0}\right]-\varepsilon \sum_{k=0}^{t} \mathbb{P}_{x}[\tau>k]
$$

Also $Y_{0}=h(x)$ since $x \notin F$, and $\sum_{k=0}^{\alpha} \mathbb{P}_{x}[\tau>k]=\mathbb{E}_{x}[\tau]$

$$
\Rightarrow E_{x}[\tau] \leqslant \varepsilon^{-1} h(x)
$$

- For $y \in F$, we have $\mathbb{E}_{y}[\tau]=1+\sum_{x \& F} P(y, x) \mathbb{E}_{2}[\tau]$

$$
\Rightarrow \mathbb{E}_{y}[z] \leqslant 1+\varepsilon^{-1} \sum_{x \& F} P(y, 2) h(x)<\infty \text { by }(\pi i 1)
$$

- Thus return time to F starting anywhere in Fhas finite expectation.
Now let $\tau_{1}, \tau_{2}, \tau_{3}, \ldots$ be the return times to F. By the strong Markov property, $Z_{1}=X_{\tau_{1}}, Z_{2}=X_{\tau_{2}}, \ldots$ form a $H M C$ on state space F. Now X_{t} irreducible means Z_{t} is also irreducible, and since F is finite $\Rightarrow Z_{t \text { is positue }}$ vecurvent, with $\mathbb{E}\left[\tilde{\tau}_{x x}\right]<\propto \forall x \in F$ under Z_{t}. MC - In the original $M C, \mathbb{E}\left[\tau_{x x}\right]=\mathbb{E}\left[\sum_{k=0}^{\infty} S_{k} \|\left\{\tilde{\tau}_{2 x}>k\right\}\right]$, where $S_{k}=\tau_{k+1}-\tau_{k} \quad \forall k \geqslant 1$.
Since $F_{\text {is finite, }} \mathbb{E}\left[S_{k} \mid X_{\tau_{k}}=l\right]=\mathbb{E}_{l}[\tau] \leqslant\left(\max _{l \in F} \mathbb{E}_{l}[\tau]\right)$

$$
\begin{aligned}
\Rightarrow \mathbb{E}\left[\tau_{\lambda x}\right] & =\sum_{k=0}^{\alpha} \sum_{l \in F} \mathbb{E}\left[S_{k} \mid X_{\tau_{k}}=l\right] \mathbb{E}_{x}\left[\left\|\left\{x_{\tau_{k}-e}\right\}\right\|\left\{\tilde{\tau}_{x a}>k\right\}\right] \\
& \leqslant\left(\max _{l \in \mathcal{F}} \mathbb{E}_{l}[\tau]\right) \sum_{k=0}^{\infty} \mathbb{P}_{x}\left[\tilde{\tau}_{x x}>k\right]<\infty
\end{aligned}
$$

$\frac{\text { Intuition for designing } h}{h(x)=c}$ Suppose $h: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$is differentiable
\qquad

$$
\begin{aligned}
& \dot{E}\left[\Delta h\left(X_{t}\right)\right]=\mathbb{E}\left[h\left(X_{t+1}\right)-h\left(X_{t}\right) \mid X_{t}=x\right] \\
&=\mathbb{E}\left[\left(X_{t+1}-X_{t}\right)^{\top} \nabla h\left(x_{t}\right) \mid X_{t=x}\right] \\
&=\mathbb{E}\left[\left(x_{t+1}-X_{t}\right) X_{t=x}\right]^{\top} \nabla h(x)<-\varepsilon \\
& \text { drift of } X_{t}
\end{aligned}
$$

Eg (Birth-death chain)

$$
p_{i}+q_{i}=1 \forall i \in \mathbb{N}
$$

- Let $h(x)=x$

$$
\begin{aligned}
\Rightarrow \mathbb{E}\left[h\left(X_{n+1}\right) \mid X_{n}=x\right] & =p_{x} \cdot(x+1)+q_{2}(x-1) \\
& =h(x)+p_{x}-q_{x}<\propto \quad \forall x \in X
\end{aligned}
$$

- Now suppose $p_{x}-q_{x}<-\varepsilon$ for allexcefffinite x, then by Foster Lyapuner, we have that the MC is positive recurrent

Eg (Discrete-tine queue) $\quad X_{n+1}=\left(X_{n}-1\right)^{+}+A_{n}$
$A_{n} \rightarrow x_{n}\| \|(1)-$ If A_{n} is id \Rightarrow it is a MC. Also it is irreducible under mild conditions on A_{n}

- Let $h(x)=x$

$$
\begin{aligned}
-\mathbb{E}\left[h\left(X_{n+1}\right) \mid X_{n}=x\right] & =(x-1)^{+}+\mathbb{E}\left[A_{n}\right] \\
& =\left\{\begin{array}{c}
h(x)-1+\mathbb{E}\left[A_{n}\right] ; \forall x \geqslant 1 \\
\mathbb{E}\left[A_{n}\right]
\end{array} \quad x=0\right.
\end{aligned} ~ . \quad x
$$

Clearly this is finite if $\mathbb{E}\left[A_{n}\right]<\alpha$
Moreover, if $\mathbb{E}\left[A_{n}\right]-1<-\varepsilon\left(\right.$ ie, $\left.\mathbb{E}\left[A_{n}\right]<1-\varepsilon\right)$, then we can use Foster-Lyapunoo to say that $M C$ is Positive reaurenet.

Eg (Join-the-shortest queue)
\qquad

Switch routing in 2 server system

- Intuitively, we need $\mathbb{E}\left[A_{n}\right]<2$. Is this sufficient
- Let $\mathbb{E}\left[A_{n}\right]=\lambda=2-\varepsilon, \quad \operatorname{Var}\left(A_{n}\right)=\sigma^{2}$

Now using $h(y, z)=y+z$ can not work (As $\mathbb{E}[$ drift] at boundary does not pointinwords)

Let $\quad h(y, z)=y^{2}+z^{2}$
Define $\Delta h(y, z)=\mathbb{E}\left[Y_{n+1}^{2}+z_{n+1}^{2}-\left(Y_{n}^{2}+z_{n}^{2}\right)((x, z))=(y, z]\right.$. When is $\Delta h(y, z)<-\delta$?
(i) $\begin{aligned} & y \geqslant z>0 \\ & \operatorname{sh}(y, z)=\end{aligned}$
$\Delta h(y, z)=(y-1)^{2}-y^{2}+\mathbb{E}\left[\left(z-1+A_{n}\right)^{2}\right]-z^{2}$

$$
=-(2 y-1)-(2 z-1)+2(z-1) \lambda+\sigma^{2}
$$

$$
=2(z(1-\varepsilon)-y)+\sigma^{2}-2(1-\varepsilon) \leqslant-2 y \varepsilon-2(1-\varepsilon)+\sigma^{2}
$$

(ii)

$$
y>z=0
$$

$$
\leqslant-\delta \quad \text { if } y>\left[\frac{\sigma^{2}+\delta-2(1-\varepsilon)}{2 \varepsilon}\right] \leftarrow \alpha
$$

$$
\Delta h(y, z)=-(2 y-1)+\sigma^{2}<-\delta \text { if } y>\left\lceil\frac{\delta+\sigma^{2}+1}{2}\right\rceil \leftharpoonup \beta
$$

(iii) $z>y>0$ (Symmetric to (i))

$$
\left.\Delta h(y, z) \leqslant-\delta \text { if } z>\sqrt{\sigma^{2}+\delta-2(1-\varepsilon)} \frac{2 \varepsilon}{}\right]
$$

(iv) $z>y=0$ (Symmetric to (ii))

$$
\begin{aligned}
& 2>y=0 \text { (Symmetric to (ii)) } \\
& \Delta h(y, z) \leqslant-\delta \text { if } z>\left\lceil\frac{\delta+\sigma^{2}+1}{2}\right\rceil
\end{aligned}
$$

Thus $\forall(y, z)$ st $y>\max (\alpha, \beta), z>\max (\alpha, \beta)$, we howe $\Delta h(y, z)<-\delta$

