Tail Bounds and the Probabilistic Method

Probabilistic Method - Given a large collection of objects, show that at least one has a certain property by arguing that a random object from the set has the property - Threshold Phenomena - Further, if we scale n (ie., consider larger colletars of objects), then either almost all or almost none of the objects have the property.
Eg-A graph $G(V, E)$ with $|V|=n$ is said to be an n-clique (denoted K_{n}) if E contains all possible edges (i, j) between nodes in V.

- A 2-coloring of G is a function $f: E \rightarrow\{r, b\}$ which associates a color in $\{,, b\}$ to each edge The - If $\binom{n}{2} 2^{-\left(\frac{k}{2}\right)+1}<1$, then \exists a two coloringol K_{n} s.t. There are no monochromatic K_{k} subgraph.

Pf Let $\Omega=\left\{2\right.$-colorings of $\left.K_{n}\right\},|\Omega|=2^{\binom{n}{2}}$
Let $\| P=$ Uniform distr on Ω
三 Color each (i,j) with \{rrb\} ~ u . ~ a i r ~ i n d e p e n d e n t l y ~
Let $\left\{1,2, \ldots,\binom{n}{k}\right\}$ be an enumeration of K_{k} subgraphs of K_{n}

$$
\begin{aligned}
& \text { - Now let } A_{i}=\mathbb{\|}\left[S_{n} \text { graph } \in\left[\left[\begin{array}{l}
n \\
k
\end{array}\right)\right] \text { is monochromatic }\right] \\
& \Rightarrow \mathbb{P}\left[A_{i}\right]=\frac{2}{2} \cdot 2^{-\left(\frac{1}{2}\right)} \leftarrow \mathbb{P}\left[\text { all edges in } ; ~ \text { have chosen } \begin{array}{c}
\text { choice of color } \\
\text { color }
\end{array}\right] \\
& \text { - } \mathbb{P}\left[N_{0} \text { monochromatic } K_{k}\right]=1-\mathbb{P}\left[\exists i \text { st } A_{i}=1\right] \\
& =1-\mathbb{P}\left[\sum_{i=1}^{(n)} A_{i}\right] \\
& -\mathbb{P}\left[\bigcup_{i=1}^{(n)} A_{i}\right] \leqslant \sum_{i=1}^{(n)} \mathbb{P}\left[A_{i}\right] \quad\left(\text { Union band }^{(n)}\right) \\
& =\binom{n}{k} 2^{-\binom{k}{2}+1}<1(\text { Assumptitas }) \\
& 1=1-\delta \\
& -\Rightarrow \mathbb{P}\left[N_{0} \text { monochromatic } K_{k}\right]=\delta>0 \\
& \text { - 2-coloring of } K_{n s t} \text { no no notch romantic } K_{k}
\end{aligned}
$$

The above result is existential, but can be mode constructive via a randomized algorithm. This tabes 2 forms-

- Monte Carlo Ago (Deterministi chime, varadominal covectresss) - Color m graphs randomly as above. Then at least I satisfies property w.p $\geqslant 1-(1-\delta)^{m} \geqslant 1-e^{-m \delta}$
- Las Vegas Alyo (Randan time, deterministic correctness) - Color single graph randomly, check if condition true, else repeat..

The First Moment Methods
These refer to arguments which only need $\mathbb{E}[x]$

- Lemma - For $X \in \mathbb{N}, \mathbb{P}[x \geqslant \mathbb{E}[x]]>0, \mathbb{P}[x \leq \mathbb{E}[x]>0$

Pf - Suppose $\mathbb{P}\left[x \geqslant \mathbb{E}[X]=0 \Rightarrow \mathbb{E}[x]=\sum_{i=1}^{\infty} x \mathbb{P}[x=x]\right.$

- Lemma - If $X \in N_{0}=\{0,1,2 ; \ldots\}$, then

$$
\begin{gathered}
\mathbb{P}[x \neq 0] \leqslant \mathbb{E}[x] \\
\underline{P}-\mathbb{P}[x>0]=\mathbb{P}[x \geqslant 1] \leqslant \mathbb{E}[x] \text { by Markov }
\end{gathered}
$$

Eg - If $m=(1+8) \log \log n$ balls thrown in n bins nave. The the prob that there is an empty bis gees to 0 .

$$
\begin{aligned}
& P \mathrm{P} \text { - Let } X=\# \text { of empty bins } \Rightarrow \mathbb{P}[X \neq 0]<\mathbb{E}[x] \\
& \text { Apo } \mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}[\mathbb{1}[\operatorname{Bin} i \text { is empty }]] \\
& =n(1-1 / n)^{m}=n(1-1 / 4)^{(+k) n \lg n} \\
& \leqslant n e^{-(t+\varepsilon) \log n}=n^{-\varepsilon} \\
& \Rightarrow \mathbb{P}[x \neq 0]<n^{-\varepsilon} \searrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Eg - For any undirected graph $G(V, E)$ with $|V|=$ nad $|E|=m, \exists$ partition of V into sets A, B sst the cat $\delta(A, B)=\{(i, i) \in E \mid i \in A, j \in B\}$ has $|\delta(A, B)| \geqslant m / 2$
$P f-F_{\text {ar }}$ each $i \in V$, put: in $A_{w p} 1 / 2$, else $i \in B$

$$
\begin{aligned}
& \Rightarrow F_{o v} \text { any }(i, j) \in E \text {, we have } \mathbb{P}[(i, j) \in \delta(A, B)]=1 / 2 \\
& \text { Let } X_{i j}=1|((i, j) \in \delta(A, B)\} \Rightarrow \delta(A, B)|=\sum_{(i, j) \in E} X_{i j} \\
& \Rightarrow \mathbb{E}[|\delta(A, B)|]=\sum_{(i, j) \in E} \left\lvert\, E\left[X_{i j}\right]=\frac{m}{2}\right. \\
& \Rightarrow \mathbb{P}[|\delta(A, B)|>m / 2]>0
\end{aligned}
$$

First moment arguments are sometimes strengthened if you first thin the underlying set by sub-sampling
Eg- In a gwen graph $G(V, E)$, a set $B \subseteq V_{\text {is }}$ said to be independent if no pair of nodes i, j in B have an edge between them. The size of the' largest independent set is denoted as $\alpha(G)$.

- Finding $\alpha(G)$ is computationally hard! In fact,

Tho - For any $G(V, E)$ with $|V|=n,|E|=m$, we howe $\alpha(G) \geqslant n^{2} / 4 m$.

Pf - We first thin the graph by removing each vertex inclependently with prob I-P (Removing vertex \Rightarrow remove all incident edges)

- Let $X=\#$ of vertices which vemainafter thinning

$$
\Rightarrow \mathbb{E}[X]=n P
$$

- Let $Y=$ \# of edges which remain after thinning

$$
\Rightarrow \mathbb{E}[Y]=\sum_{(i, j) \in E} \mathbb{E}[\mathbb{Z}\{i, j \text { not thinned }\}]=m \cdot p^{2}
$$

- Finally, we remove each remaining edge and one of its neighbors arbitrarily. The remaining nodes form an independent set, with expected size at least $E[x-y]=p(n-m p)$. Setting

$$
\begin{aligned}
& P=\frac{n}{2 m} \text { (ie., } 1 / \text { 'average degree of } G \text {), we gel } \mathbb{E}[x-y]=\frac{n^{2}}{4 m} \\
& \Rightarrow \\
&
\end{aligned}
$$

The Second-Mament Method

- Till now we tried showing some vale event happens (ie, $X \neq 0$) What if instead we want to show a highly likely even en always?
Lemma - For $x \in \mathbb{N o}, \mathbb{P}[x=0] \leqslant \operatorname{Vav}(x) / \mathbb{E}[x]^{2}$

$$
\text { Pf }-\mathbb{P}[x=0] \leqslant \mathbb{P}[|x-\mathbb{E}[x]| \geqslant \mathbb{E}[x]] \leqslant \operatorname{Var}(x) / \mathbb{E}[x]^{2} \text { (Chebyghow) }
$$

Eg-Suppose we throw $m=(1-\varepsilon) n \log n$ balls in n bins.
As before, Let $X=$ \# of empty bins

$$
\begin{aligned}
& \Rightarrow \mathbb{E}[x]=n \cdot(1-1 / n)^{m} \approx n \cdot n^{-1+\varepsilon} \uparrow \propto\left\{\begin{array}{l}
\text { Let }\left(1-\frac{1}{n}\right)^{m}=\delta \\
\text { Does this mean } \mathbb{P}[x=0] \searrow 0 \text { ? }
\end{array} \Rightarrow \mathbb{E}[x]=n \delta\right.
\end{aligned}
$$

Let $X=X_{1}+X_{2}+\ldots+X_{n}$, where $X_{i}=\mathbb{1}\left\{B_{\text {in }} i\right.$ is empty $\}$

$$
\begin{equation*}
\operatorname{Var}(x)=\sum_{i=1}^{n} \operatorname{Var}\left(x_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(x_{i}, x_{j}\right) \tag{i}
\end{equation*}
$$

$$
\begin{aligned}
& \operatorname{Var}\left(x_{i}\right)=\mathbb{E}\left[x_{i}^{2}\right]-\mathbb{E}\left[x_{i}\right]^{2}=\delta(1-\delta) \\
& \operatorname{Cov}\left(x_{i}, x_{i}\right)=\mathbb{E}\left[x_{i} x_{j}\right]-\left(\mathbb{E}\left[x_{i}\right]\right)^{2}=(1-2 / n)^{m}-\delta^{2}
\end{aligned}
$$

To use the Ind moment method we now want to upper bound $\operatorname{Var}(x)=n \operatorname{Var}\left(x_{i}\right)+\binom{n}{2} \operatorname{Cov}\left(x_{i}, x_{j}\right)$

- First for the covariance terms

$$
\begin{aligned}
& \operatorname{Coo}\left(x_{i}, x_{j}\right)=\left(1-\frac{2}{n}\right)^{m}-\left(\left(1-\frac{1}{n}\right)^{2}\right)^{m}=\left(1-\frac{2}{n}\right)^{m}-\left(1-\frac{2}{n}+\frac{1}{n^{2}}\right)^{m} \\
& \Rightarrow \operatorname{Cov}\left(x_{i}, x_{j}\right) \leqslant 0 \quad \forall n, m \geqslant 0! \\
& \Rightarrow \operatorname{Var}(x) \leqslant n \operatorname{Var}\left(x_{i}\right)=n \delta(1-\delta)
\end{aligned}
$$

- Using the lemma, we have

$$
\mathbb{P}[x=0] \leqslant \frac{\operatorname{Var}(x)}{(\mathbb{E}[x])^{2}}=\frac{1-\delta}{n \delta} \leqslant \frac{1}{n \delta}=\frac{1}{\mathbb{E}[x]} \text { ! }
$$

- To complete the proof, we need to check that $\mathbb{E}[X]$ does indeed $\uparrow \infty$ with n, when $m=(1-\varepsilon) n \log n$. This is true (try to show it....)
What is nave important is to observe what we did at a higher level-
- We want to go from $\mathbb{E}[x] \uparrow \propto$ to $\mathbb{P}[x=0] \searrow 0$
- To do so, we sloop $\operatorname{Var}(X) \leq \mathbb{E}[X] \quad\left(\right.$ or $\left.\operatorname{Var}(X)=o\left(\mathbb{E}[x]^{2}\right)\right)$
- Finally using $\mathbb{P}[x=0] \leq \frac{\operatorname{Var}(x)}{\mathbb{E}[x]^{2}}$, we are done!

To summarize - If $X_{n} \in N_{0}$, then we have as n / ∞

$$
\begin{aligned}
& \text { o summarize - If } x_{n} \in \mathbb{N}_{0} \text {, then we have as } n / \alpha \\
& \text { i) If } \mathbb{E}\left[x_{n}\right] \searrow 0 \Rightarrow \mathbb{P}\left[x_{n} \neq 0\right] \searrow 0 \\
& \text { ii) If } \mathbb{E}\left[x_{n}\right] \nmid \propto \& \mathbb{E}\left[x_{n}^{2}\right]=\theta\left(\mathbb{E}\left[x_{n}\right]^{2}\right) \Rightarrow \mathbb{P}\left[x_{n}=0\right] \searrow 0
\end{aligned}
$$

Threshold Phenomena in large random systems
The moment methods are use ful for studying threshold phenomena in large systems - settings where as we scale a system, then a certain property is always true or never true depending on some underlying parameter. Eg- If we throw m balls in n bins, then as $n \%_{\infty}$

$$
\begin{aligned}
& \text { i) If } m=(1-\varepsilon)_{n} \log _{n} \Rightarrow \mathbb{P}[\exists \text { empty bin }]>1 \\
& \text { ii) If } m=(1+\varepsilon)_{n} \log _{n} \Rightarrow \mathbb{P}[\exists \text { empty bin } \geq 0
\end{aligned}
$$

In computer science, this is known as the coupon collector problem, and in fact, we know sharper bounds than this (see assignment) - however the $1 s t / 2 \mathrm{nd}$ manet methods give us these bounds in an easy way).
Eg- A $G(n, p)$ random graph is a random graph $Y=G(V, E)$ whore $|V|=n$ and $E_{i j} \sim \operatorname{Ber}(p) \forall i \neq j$ (ie, each edge is present w. pp $P i i d$) Let $C_{4}^{n P}=\#$ of K_{4} in a given $G(n, p)$ graph. Then we have
i) $\mathbb{P}\left[C_{4}^{n, p}=0\right] \downarrow 0$ if $p=\theta\left(n^{-2 / 3}\right)$
ii) $\mathbb{P}\left[C_{4}^{n, p} \neq 0\right] \searrow 0$ if $P=\omega\left(n^{-2 / 3}\right)$

Thus $P=\theta\left(n^{-2 / 3}\right)$ is the threshold for existence of 4 -cliques in a $G(n, p)$ graph

Pf - Let $i \in\left\{1,2, \ldots,\binom{n}{4}\right\}$ be an enumeration of all $X_{1}=1 \mathbb{C}^{\text {set of nodes in in }}$ in K_{4} all potential 4 -cliques, $X_{i}=\mathbb{H}_{\{ }\left\{C_{i}^{\swarrow}\right.$ has a $\left.K_{4}\right\}$

$$
\begin{aligned}
& -\mathbb{E}\left[X_{i}\right]=p^{6} \quad\left(\because a K_{4} \text { has } 6 \text { edges }\right) \\
& -\mathbb{E}\left[C_{4}^{n, p}\right]=\mathbb{E}\left[\sum_{i=1}^{\binom{n}{n}} X_{i}\right]=\binom{n}{4} p^{6} \approx n^{4} p^{6} \\
& -\operatorname{Var}\left(C_{4}^{n, p} 4\right)=\binom{n}{4} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& \operatorname{Var}\left(X_{i}\right)=\underbrace{\mathbb{E}\left[x_{i}\right]}_{=\mathbb{E}\left[X_{i}^{2}\right]}-\left(\mathbb{E}\left[x_{i}\right]\right)^{2} \leqslant\binom{ n}{4} p^{6}=\theta\left(n^{4} p^{6}\right) \\
& \left.-\operatorname{Cov}\left(X_{i}, X_{j}\right)=O \text { if }\left|C_{i} \cap C_{j}\right|=O_{0 r} \mid \text { (ie, don't slave anele }\right)
\end{aligned}
$$

This is because such X_{i}, X_{j} are \Perp !

- For $\left|C_{i} \cap C_{j}\right|=2, \operatorname{Coo}\left(X_{i}, X_{j}\right) \leqslant \mathbb{E}\left[X_{i} X_{j}\right] \leqslant p^{11}$

This follows as C_{i} ad C_{j} have 1 edge in common

$$
\begin{aligned}
\Rightarrow & \sum_{\left|k_{i} c_{j}\right|=2} \operatorname{Cov}\left(x_{i}, x_{j}\right) \leqslant\binom{ n}{6} \cdot\left(\frac{6!}{2!2!2!}\right) \cdot p^{\prime \prime}=\theta\left(n^{6} p^{\prime \prime}\right) \\
- & \operatorname{For} C_{i} \cap C_{j} \mid=3, \operatorname{Cov}\left(x_{i}, x_{j}\right) \leqslant p^{9} \text { and we have } \\
& \sum_{\mid i_{i} C_{j} j=3} \operatorname{Cov}\left(x_{i}, x_{j}\right)=\theta\left(n^{5} p^{9}\right) \\
\Rightarrow & \operatorname{Var}\left(C_{4}^{n, p}\right)=\theta\left(n^{4} p^{6}+n^{5} p^{9}+n^{6} p\right)=\theta\left(\mathbb{E}\left[C_{4}^{n \cdot p}\right]\right)
\end{aligned}
$$

Now we use the moment bounds to finish the prot!

The Lovasz Local Lemma

- Our arguments till now depended on showing $\mathbb{E}[x]>0$, where $X=\llbracket\{E\}$ for sone event $E=\bigcap_{i=1}^{n} E_{i}$. There are 2^{\prime} dared $^{\prime}$ aras for this - i) Via the union bound on 'bod evert's' \bar{E}_{i}

$$
\mathbb{E}[X]=1-\mathbb{P}\left[\hat{\theta}_{i=1}^{\hat{E}} E_{i}\right] \geqslant 1-\sum_{i=1}^{n} \mathbb{P}\left[\vec{E}_{i}\right]
$$

ii) If X_{i} are independent $\Rightarrow \mathbb{E}[x]=\prod_{i=1}^{n} \mathbb{E}\left[x_{i}\right]$, where $X_{i}=\mathbb{1}\{E ;\}, \mathbb{E}\left[x_{i}\right]=\mathbb{P}\left[E_{i}\right]$

- The former works when bad event's are small (but arbitrarily clependent); the latter only needs $\mathbb{P}\left[E_{i}\right]>0\left(\right.$ so $\left.\mathbb{P}\left[E_{i}\right]<1\right)$, but needs them to be independent. Te LLL Lets us combine thee!
- For a set of events E_{1}, \ldots, E_{n}, their dependency graph $G(V, E)$ has $V=\{1,2, \ldots, n\}$ and $\forall i \in V$, event E_{i} is mutually independent of $\left\{E_{j} \mid(i, j) \notin E\right\} \quad$ (ie, all non-neighbors)
Lemma (floras Local Lemma) - Let $E_{1}, E_{2}, \ldots, E_{n}$ be events with dependency graph $G(V, E)$. Suppose $\exists x_{i} \in(0,1) \forall i \in[n]$ sit.

$$
\mathbb{P}\left[\bar{E}_{i}\right] \leqslant x_{i} \prod_{(i, j) \in E_{n}}\left(1-x_{j}\right)
$$

Then $\mathbb{P}\left[\hat{\cap} E_{i}\right] \geqslant \prod_{i=1}^{n}\left(1-x_{i}\right)$
Corollary - If $\mathbb{P}\left[\bar{E}_{i}\right] \leqslant p, \operatorname{deg}(i) \leqslant d$ and $\operatorname{ep}(d+1)<1 \Rightarrow \mathbb{P}\left[\hat{n}_{\hat{E}} E_{i}>0\right.$
Pf - Choose $x_{i}=\frac{1}{d+1} \Rightarrow x_{i} \pi\left(\frac{1}{(i) d e}\left(1-x_{i}\right)=\left(\frac{1}{d+1}\right)\left(1-\frac{1}{d+1}\right)^{d} \geqslant\right.$ ep e e^{-1} $6 \mathrm{pd}<1$ $\Rightarrow e p(t 1)<1$
$\mathbb{P}_{1}-$ The idea is write $\mathbb{P}\left[\hat{n}_{i=1} E_{i}\right]=\mathbb{P}\left[E_{1}\right] \mathbb{P}\left[E_{2} \mid E_{1}\right] \mathbb{P}\left[E_{3} \mid E_{1}, E_{2}\right] \ldots \mathbb{P}\left[E_{n} \mid E_{1}, F_{w n}\right]$ Now if $\mathbb{P}\left[E_{i} \mid E_{1}, E_{2}, E_{i-1}\right] \leq x_{i}$ for all, then we are done!

- To show the above, we show that $\forall i$, and all $S \subseteq[n] \backslash i$, we have $\mathbb{P}\left[\bar{E}_{i} \mid \bigcap_{i \in s} E_{j}\right] \leqslant x_{i}$. We do so by induction on $\mid S$. - Fix any i. For $S=\phi$, we have $\mathbb{P}\left[\bar{E}_{i}\right] \leqslant x_{i} \prod_{(i, j) \in E}\left(1-x_{j}\right) \leqslant x_{i}$
- Now suppose its true far all $S^{\prime} \leq[n] \backslash i,|S|<s$

Consider $S \leq[n]$ li st $|S|=S$. We need to slow that
(i) $\mathbb{P}\left[E_{s}\right]>0$ (so that $\mathbb{P}\left[\bar{E}_{i} \mid E_{s}\right]$ is defined)
(ii) $\mathbb{P}\left[\bar{E}_{i} \mid E_{s}\right] \leqslant x_{i}$

$$
\begin{aligned}
-\mathbb{P}\left[E_{s}\right] & =\mathbb{P}\left[\prod_{k=1}^{s} E_{k} E_{k}\right]=\prod_{k=1}^{s} \mathbb{P}\left[E_{k} \mid \bigcap_{j=1}^{k-1} E_{j}\right] \\
& \left.\geqslant \prod_{k=1}^{s}\left(1-x_{k}\right)>0 \quad \text { (by induration of }\right)
\end{aligned}
$$

- Next let $S=S_{c} U$, where $S_{c}=\operatorname{S\cap N}(i)$

$$
\begin{aligned}
& \text { - If } S=S_{d} \Rightarrow \mathbb{P}\left[\bar{E}_{i} \mid E_{S}\right]=\mathbb{P}\left[\bar{E}_{i}\right] \leqslant x_{i}
\end{aligned}
$$

- Otherwise $\mathbb{P}\left[\bar{E}_{i} \mid E_{s}\right]=\frac{\mathbb{P}\left[\overline{E_{i}} \cap E_{s_{s}} \cap E_{s_{s}}\right]}{\mathbb{P}\left[E_{s_{2}} \cap E_{s_{d}}\right]}$

$$
=\frac{\mathbb{P}\left[E_{i} \cap E_{s_{c}} \mid E_{s_{d}}\right] \mathbb{P}\left[E_{s_{d}}\right]}{\mathbb{P}\left[E_{s_{c}} \mid E_{s_{d}}\right] \mathbb{P}\left[E_{s_{d}}\right]}
$$

Now we have $\mathbb{P}\left[\overline{E_{i}} \cap E_{s_{d}} \mid E_{s_{\lambda}}\right] \leqslant \mathbb{P}\left[\bar{E}_{i} \mid E_{s_{d}}\right]=\mathbb{P}\left[\bar{E}_{i}\right] \leqslant x_{i \cdot} \prod\left(1,-x_{i}\right)$ $E_{i} \| E_{j} \forall j \in S_{d}$

$$
\begin{aligned}
\text { Moreover } \mathbb{P}\left[E_{s_{c}} \mid E s_{d}\right] & =\mathbb{P}\left[\bigcap_{j \in s_{c}} E_{j} \mid \bigcap_{k \in s_{d}} E_{k}\right] \quad\left(l l+S_{c}=\left\{d, j, j^{2}, \ldots, j, j\right\}\right) \\
& =\prod_{l=1}^{r}\left(1-\mathbb{P}\left[E_{j l} \mid \bigcap_{l<l} E_{j_{k}}, \bigcap_{k \in s_{d}} E_{k}\right]\right) \\
& \geqslant \prod_{l=1}^{r}\left(1-x_{j l}\right) \geqslant \prod_{i j l}\left(1-x_{j}\right)
\end{aligned}
$$

C induction hypothesis
$\Rightarrow \mathbb{P}\left[\bar{E}_{i} \mid E s\right] \leqslant x_{i} \forall i, \forall S$ with $|s|=S$
By induction, we complete the proof
Eg-(Satisficbility) A R.SAT formula is a function of binary variables $x_{1}, x_{2}, \ldots, x_{n} \in\{0,1\}^{n}$ of the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{c=1}^{m}\left(x_{1 c} \vee x_{2 c} \vee \ldots \vee x_{k c}\right)
$$

where $\Lambda \equiv A N D$ (or conjunction), $V \equiv O R$ (or disjunction), $x_{i} \in\left\{x_{1}\right.$, $\left.x_{2}, \ldots, x_{n}, \bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right\} \equiv$ literal, and $\left(x_{k} \vee \ldots \vee x_{k c}\right)$ ' clause (In words - f is a conjunction of n disjunctive clauses, each with n literals) The - A k-SAT formula where no variable appears in more then $2^{k} / 6 k$ clauses is satisfiable (ie, $\exists x \in\{0,1\}^{n}$ s.t $f(x)=1$)
Pf - Set $X_{i} \sim \operatorname{Ber}(1 / 2)$. Want to show $\mathbb{P}\left[f\left(X_{1}, \cdots, x_{n}\right)=1\right]>0$ - Let $E_{i} \equiv$ Event clause inot satisfied. $\mathbb{P}\left[E_{i}\right] \leqslant 2^{-k}$. Want $\mathbb{P}\left[\sum_{i=1}^{\infty} E_{i}\right]>0$
$E_{i} \| E_{j}$ if $E_{i}-d E_{j}$ share no common literals
$\Rightarrow d\left(E_{i}\right) \leqslant k$. (max \#of clauses with same literal $) \leqslant 2^{k} / 6$
$\Rightarrow 6 \cdot \mathbb{P}\left[E_{i}\right] \cdot d\left[E_{i}\right]<1 \Rightarrow$ By $L L L, \mathbb{P}\left[\bigcap_{i=1}^{n} E_{i}\right]>0$

- A segue-2-SAT
- A2.SAT formula on $\left\{x_{1}, \bar{x}_{1}, x_{2}, \ldots, x_{n}, \bar{x}_{n}\right\}$ is of the form

$$
f(\underline{x})=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee \bar{x}_{1}\right) \wedge \ldots
$$

Claim - A satisfying assignment for a.2.SAT formula an. be foul in poly tine

- There ave multiple ways to do this; we will now see a simple randomized algorithm, which then takes us into Marker Chains

$$
\text { For } i \in\left\{0,1,2, \ldots, n^{2}\right\}
$$

- If XIi) is feasible, sTop and return $x(i)$
- Else pick any unsatisfied clause, choose one offits literals li uar
- Set $x(i+1)=x$ (i) with bit l_{i}^{\prime} flipped

Claim- If f is satisfiable, then WALk-SAT finds a satisfying assignment with probability $\geqslant 1 / 2$
$P f$ - Let S be any satisfying assignment, add $/ N_{i}=\#$ of raviables in x / i which agree with S. If $X(i)$ is not feasible \Rightarrow

$$
X(i+1)=\left\{\begin{array}{ll}
X(i)+1 & \omega p \geqslant 1 / 2 \\
X(i)-1 & \omega p \leqslant 1 / 2
\end{array} \text { if } X(i) \in\{1,2, \ldots, n-1\}\right.
$$

- Now let $h_{j}=\mathbb{E}\left[\min \left\{T \mid N_{T}=n, N_{0}=j\right\}\right]$

$$
\Rightarrow \quad h_{j} \leqslant \frac{1}{2}\left(h_{j-1}+1\right)+\frac{1}{2}\left(h_{j+1}+1\right), h_{n}=0
$$

Solve to gat $h_{j} \leqslant n^{2}-j^{2} \leqslant n^{2}$
$\Rightarrow \mathbb{E}[$ Tine to return correct solution $] \leq n^{2}$

