Modes of Convergence

Limit Theorems and Convergence of rus

- When we work with complex random systems, or stochastic processes, we are often interested in the limiting behavior of such processes, ie., we want to say $\lim _{n \rightarrow \infty} X_{n}=X$, where X_{n}, X are r, v.
It turns out however that there are multiple ways to define such a notion, with different properties and applications of each. The strongest (but least useful) is:

1) Point-wise Convergence - A sequence of vo $\left(x_{n}, i n \geqslant 1\right)$ on $(\Omega, \mathcal{F}, \mathbb{P})$ converges pointwise to r. \cdot. $X_{\text {on }}(\Omega, \mp, \mathbb{P})$ if

$$
\lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega) \quad \forall \omega \in \Omega
$$

- Staying with X_{n} and X on the same space, we have 3 monemodes

2) Almost-Sure Convergence - A sequence of $r v\left(X_{n}: n \geqslant 1\right)$ on (Ω, F, \mathbb{P}) converges almost-surely to v.v. X in (Ω, F, \mathbb{P}) if

$$
\mathbb{P}\left[\lim _{n \rightarrow \infty} X_{n}=X\right]=1 \quad\left(\text { notation: } X_{n} \xrightarrow{\text { as }} X\right)
$$

3) Convergence in Probability - A sequence of roo. $\left(X_{n} \cdot n \geqslant 1\right)$ on (Ω, I, \mathbb{P}) converges in probability to $v \theta X$ in $(\Omega, \pi, \mathbb{P})$ if

$$
\forall \varepsilon>0, \lim _{n \rightarrow \infty} \mathbb{P}\left[\left|x-x_{n}\right|>\varepsilon\right]=0 \quad\left(\text { notation }: x_{n} \xrightarrow{P} x\right)
$$

4) Converges in l_{p} - A sequence of riv. $\left(x_{n}: n \geqslant 1\right)$ on (Ω, F, \mathbb{P}) converges to vo. X in $\left(\Omega, F_{1} \mathbb{P}\right)$ in l_{p} for $p \geqslant 1$ if $\left(\right.$ notation: $\left.X_{n} \xrightarrow[p]{l_{p}} X\right)$

$$
\lim _{n \rightarrow \infty}\left\|X_{n}-X\right\|_{p}=0 \text {, where }\left\|X_{n}-X\right\|_{p}=\left(\mathbb{E}\left[\left(X_{n}-X\right)^{p}\right]\right)^{1 / p}
$$

- The operator (ie, function acting on functions) $\|$. $\| p$ is called the lp-norm, and is a way to measure 'distance' between objects, in this case, between riv. There are two particular values of P which we are usually interested in Convergence in $\operatorname{Mean}(P=1)$ - $\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|x_{n}-x\right|\right]=0$ Convergence in Mean-Square $(P=2)-\lim _{n \rightarrow \infty}\left(\mathbb{E}\left[\left(x_{n}-x\right)^{2}\right]\right)^{1 / 2}=0\left(\begin{array}{l}\text { and also } \\ \mathbb{E}\left(x^{2}\right]<\alpha \\ \forall n\end{array}\right)$
- All of the above were for X_{n} and X on the same (Ω, X, \mathbb{P}). The final mode of convergence is special in that if does not even require this!

5) Convergence in Distribution (or Weak Convergence) - A sequence of vo. X_{n} converges to a rv. X in distribution if $\lim _{n \rightarrow \infty} F_{n}(t)=F(t) \quad \forall t \in \mathbb{R}$ at which $F(t)$ is continuous (notion: $\left.X \xrightarrow[n]{d} x\right)$
Why so many notions? In a way, this reflects the richness of probability, in that it combines an underlying set Ω, a probability function on sets in the σ-field, functions $X(\omega)$ on Ω (ross), distribution functions of these $r v$., and their properties (expectation, variance, etc.). Importantly, they are related as

$$
\left.\begin{array}{rl}
\left(x_{n} \xrightarrow{l_{p}} x\right) \Rightarrow\left(x_{n} \underline{l_{s}} x\right) \Rightarrow\left(x_{n} \xrightarrow{l_{t}} x\right)
\end{array} \quad\left(x_{n} \xrightarrow{\text { as, }} x\right) \Longrightarrow\left(x_{n} \xrightarrow{p} x\right) \Longrightarrow x\right) \Longrightarrow\binom{\text { implication diagram of }}{\text { He modes of convergence }}
$$

We now build some intuition behind each definition Convergence in almost-sure vs in probability
These are concerned with the probability of events under rvs $\left(X_{n} ; n \geqslant 1\right)$ and X defined on a common space $(\Omega, \widetilde{F}, \mathbb{P})$. They differ in the 'relative position' of the \mathbb{P} and \lim operators

$$
\underbrace{\text { vs }}_{X_{n} \xrightarrow{\lim _{n \rightarrow \infty}} \mathbb{P}\left[x_{n}{ }^{\prime}=x\right]=0} \underbrace{\mathbb{P}\left[\lim _{n \rightarrow \infty} x_{n}=x\right]=0}_{X_{n} \xrightarrow{\text { ass }} x}
$$

Eg -Let $\left\{x_{n} ; n \geqslant L\right\}$ be the following seq of re. on Uniform $[0,1]$

and in general for $n=2^{k}+j$,

$$
X_{n}(\omega)=\left\{\begin{array}{l}
1 i f \omega \in\left(j 2^{-k},(j+1) 2^{-k}\right) \\
0 \theta_{\theta \omega}
\end{array}\right.
$$

- To check if $X_{n} \xrightarrow{\text { ass }} X$ for some X, fix any w and consider the sequence $\left(X_{1}(\omega), X_{2}(\omega) \ldots\right)$. Observe that $\lim _{n \rightarrow \infty} X_{n}(\omega)$ does notexist! $\Rightarrow X_{n}$ does not concierge a.s. to any ${ }^{n \rightarrow \infty}$ r. .
- However, note also that $\mathbb{P}\left[x_{n}>0\right]=1 / 2^{1 \log _{22} 7} \rightarrow 0$

$$
\Rightarrow \lim _{n \rightarrow \infty} \mathbb{P}\left[\left|x_{n}-0\right|>\varepsilon\right]=0 \forall \varepsilon \Rightarrow X_{n} \xrightarrow{P} 0
$$

- A more useful way to think of this is via the set of Bad Events $B_{n}(\varepsilon)=\left\{\omega| | X_{n}(\omega)-X(\omega) \mid>\varepsilon\right\}$ and the tail set of bad events $\left.B_{n}^{\alpha}(\varepsilon)=\left\{\omega| | X_{k}(\omega)\right) X(\omega) \mid>\varepsilon \forall k \geqslant n\right\}$
- Now by def, $X_{n} \xrightarrow{P} X$ if $\lim _{n \rightarrow \infty} \mathbb{P}\left[B_{n}(\varepsilon)\right]=0$
- Ontho other hand, let $C=\left\{\omega \mid \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\}$ then by defn $X_{n}^{\prime} \stackrel{\text { css }}{ } X$ if $\mathbb{P}^{P}[C]=1$
- Now note that. $B_{n}(\varepsilon) \supseteq B_{n}^{\alpha}(\varepsilon)$

$$
\begin{aligned}
& \cdot B_{1}^{\infty}(\varepsilon) \subseteq B_{2}^{\infty}(\varepsilon) \subseteq \\
(\text { by sequential continuity }) & \Rightarrow \lim _{h \rightarrow \infty} \mathbb{P}\left[B_{n}^{\infty}(\varepsilon)\right]=\mathbb{P}\left[\bigcup_{n=1}^{\infty} B_{n}^{\infty}(\varepsilon)\right] \\
& \cdot C \subseteq \bigcup_{n=1}^{\infty} B_{n}^{\infty}(\varepsilon) \Rightarrow \mathbb{P}[c] \leq \mathbb{N}^{[}\left[\bigcup_{n=1}^{\infty} B_{n}^{\infty}(\varepsilon]\right]
\end{aligned}
$$

\Rightarrow If $X_{n}{ }^{\text {as }} X$, then $\mathbb{P}\left[\bigcup_{n=1}^{i} B_{n}^{n}(\varepsilon)\right]=1$

- Also since $\mathbb{P}\left[B_{n}(\varepsilon)\right] \geqslant \mathbb{P}\left[B_{n}^{\infty}(\varepsilon)\right] \quad \forall n$

$$
\begin{aligned}
& \Rightarrow \lim _{n \rightarrow \infty} \mathbb{P}\left[B_{n}(\varepsilon)\right] \geqslant \lim _{n \rightarrow \infty} \mathbb{P}\left[B_{n}^{\infty}(\varepsilon)\right]=1 \\
& \text { Thus } X_{n} \xrightarrow{\text { as }} X X X_{n} \xrightarrow{p} X
\end{aligned}
$$

Thinking about bad sets also allows wi to get a partial convore First we reed an additional defn.
Def -Given a sequence of events $\left(A_{n i n} \geqslant 1\right)$, the event A_{n} occurs infinitely often (or $\left\{A_{n}\right.$ i.o. \}) is defined as

$$
\left\{A_{n} \text { i. } \theta\right\}=\left\{\omega \mid w \in A_{n} \text { for infinitely many } n\right\}=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{n}
$$

- Lemma (Borel-Cantelli Lemmas) $)$ Let $\left(A_{n} i n \geqslant 1\right)$ be a sequence of events. Then

$$
\text { i) } \sum_{n=1}^{\infty} \mathbb{P}\left[A_{n}\right]<\infty \Rightarrow \mathbb{P}\left[A_{n} i \theta\right]=0
$$

$\binom{($ Lessunatit }{ convert. } ii) $)$ If A_{n} are indeperclent and $\sum_{n=1}^{\infty} \mathbb{P}\left[A_{n}\right]=\infty \Rightarrow \mathbb{P}\left[A_{n}\right.$ i.0. $]=1$
Pf. Note that $\bigcup_{k=n}^{\infty} A_{k} \supseteq \bigcup_{k=n+1}^{\infty} A_{k} \supseteq \bigcup_{k=n+2}^{\infty} A_{k}$
$\Rightarrow \mathbb{P}\left[\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\alpha} A_{k}\right]=\lim _{n \rightarrow \infty} \mathbb{P}\left[\bigcup_{k=n}^{\infty} A_{k}\right] \quad\binom{$ sequential }{ continuity }
Also $\mathbb{P}\left[\bigcup_{k=n}^{\alpha} A_{k}\right] \leqslant \sum_{k=n}^{\infty} \mathbb{P}\left[A_{k}\right] \quad\binom{$ union }{ bound }
and since $\sum_{n=1}^{k} P\left[A_{n}\right]<\infty \Rightarrow \lim _{n \rightarrow \infty} \sum_{k=n}^{N} \mathbb{P}\left[A_{k}\right]=0$

$$
\Rightarrow \mathbb{P}\left[A_{n} i \theta\right]=\mathbb{P}\left[\cap_{n=k=n}^{\infty} \bigcup_{k}^{\infty} A_{k}\right] \leqslant \lim _{n \rightarrow \infty} \sum_{k=n}^{\alpha} \mathbb{P}\left[A_{n}\right]=
$$

- For the converse, w.l.o.g assume $\mathbb{P}\left[A_{n}\right]_{-}>0 \forall_{n} \geqslant 1$

Then $\quad \prod_{k=n}^{\infty}\left(1-\mathbb{P}\left[A_{k}\right]\right) \leq \prod_{k=n}^{\infty} e^{-P[A A]}=e^{-\sum \sum P P_{n}}=0$ by def
Also since A_{k} are $\mathbb{L} \Rightarrow \mathbb{P}\left[\bigcap_{k=n}^{\infty} \bar{A}_{k}\right]=\prod_{k=n}^{\infty}\left(1-\mathbb{P}\left[A_{k}\right]\right)$

$$
\begin{aligned}
& \Rightarrow \mathbb{P}\left[\bigcap_{k=n}^{\infty} \bar{A}_{k}\right] \neq 1 \mathbb{P}\left[\hat{N}_{k=n}^{\infty} \bar{A}_{k}\right]=1 \\
& \Rightarrow \mathbb{P}\left[A_{n} ; \theta\right]=\mathbb{E}\left[\bigcup_{n=1}^{\infty} \bigcap_{n=n}^{\infty} A_{k}\right]=1
\end{aligned}
$$

- Now returning to $X_{n} \xrightarrow{\text { as }} X$ vs $X_{n} \xrightarrow{\text { ass }} X$

Than i) $X_{n} \xrightarrow{\text { as }} X \Rightarrow X_{n} \xrightarrow{p} X$
ii) $X_{n} \xrightarrow{p} X$ (ie. $\left.\lim _{n \rightarrow \infty} \mathbb{P}\left[B_{n}(\varepsilon)\right]=0\right)$ and $\sum_{n=1}^{\infty} \mathbb{P}\left[B_{n}(\varepsilon)\right]<\infty$ $\Rightarrow X_{n} \xrightarrow{\text { as }} X$
Convergence in probability us lp $\quad \begin{aligned} & \text { Recall bad events } \\ & B_{n}(\varepsilon)=\left\{\omega\left|X_{n}(\Delta) \times(0)\right|>\varepsilon\right\}\end{aligned}$

- While $X_{n} \xrightarrow{P} X$ implies that $\mathbb{P}\left[B_{n}(\varepsilon)\right]$ is small, it does not say anything about $\left|X_{n}(\omega)-X(\omega)\right|$ for $\omega \in B_{n}(\varepsilon)$. This extra 'control' is ensured by lp convergence.
- lp norm $\|y\|_{p} \triangleq\left(\mathbb{E}\left[|y|^{p}\right]\right)^{1 / p}$ is a norm on r v. $\left.\left.f \times p\right\rangle\right\rangle$ $\Rightarrow 3\left[\right.$ i) $\|a y\|_{p}=a\|y\|_{p} \quad$ ii) $\|y\|_{p}=0 \Rightarrow y=0 a . s$
properties: $[i i i) ~\|Y+Z\|_{p} \leqslant\|y\|_{p}+\|Z\|_{p}$ (triangle inequality)
Eg - $\operatorname{Consider}\left(X_{n}, n \geqslant 0\right)$ where $X_{n}=\left\{\begin{array}{lll}a_{n} \text { for } w \in[0, \%] \\ 0 & \text { ow }\end{array}\right]$
- For any a_{n}, we have $\mathbb{P}\left[B_{n}(\varepsilon)\right]=1 / 4 \searrow 0 \quad \forall \varepsilon>0$
- If $a_{n}>0$, then $\mathbb{P}\left[\lim _{n \rightarrow \alpha} X_{n}(0)=0\right]=1 \Rightarrow X_{n} \xrightarrow{\text { as }} X$ (Note - $\sum_{n=1}^{\infty} \mathbb{P}\left[B_{n}^{\prime}(\varepsilon)\right]=\alpha$ but B_{n} not :id \Rightarrow cant use Boil Cantelli)
$-\left(\mathbb{E}\left[\left(x_{n}-0\right)^{2}\right]\right)^{1 / 2}=\frac{a_{n}}{\sqrt{n}} \Rightarrow$ for $X_{n} \stackrel{n}{\Rightarrow} \Rightarrow X$, we ned $\lim _{n \rightarrow \alpha} \frac{a_{n}}{\sqrt{n}}=0$

Thy - Convergence in P and $l p$ are rebated asfollaors
i) If $r>s \geqslant 1$, then $X_{n} \xrightarrow{l_{r}} X \Rightarrow X_{n} \xrightarrow{l_{s}} X$
ii) If $X_{n} \xrightarrow{l} X \Rightarrow X_{n} \xrightarrow{P} X$
iii) If $X_{n} \xrightarrow{p} X$ and $\mathbb{P}\left[x_{n}<k\right]=1 \forall n$ far some k then $X_{n} \xrightarrow{l_{r}} X$ for all $r \geqslant 1$
We first need 2 inequalities, which on their own are perhaps more useful!

- (Markov's Inequality) For any non-negative ru Z, and any $a>0$

$$
\mathbb{P}[z \geq a] \leqslant \mathbb{E}[z] / a
$$

Pf-Observe that $\left(a \|_{\{x \geqslant a\}}\right) \geqslant x \quad \forall x \geqslant 0$

$$
\begin{aligned}
\Rightarrow \mathbb{E}[z] & \leqslant \mathbb{E}[a \cdot \|\{z \geqslant a\}] \\
& =a \mathbb{P}[z \geqslant a
\end{aligned}
$$

- (Jensen's Inequality) Given any riv Z and $f_{n} f$
i) If f is convex $\Rightarrow \mathbb{E}[f(x)] \geqslant f(\mathbb{E}[x])$
ii) If f is concave $\Rightarrow \mathbb{E}[f(x)] \leqslant f(\mathbb{E}[x])$
(We will see this in more detail in the assignment)
- Proposition - $\mid f>q \geqslant 1$, then $\|x\|_{p} \geqslant\|x\|_{q}$

Pf -For $x \geqslant 0$, le f $\left.f(x)=x^{p / q} \Rightarrow f^{\prime}(x)=\frac{p}{(p-1} \frac{p}{q}\right) x^{p /-2} \geqslant 0$
fo all $p>q \Rightarrow$ is convex
Also given any rio. X, let $Y=X^{q}$
By Jensen's Inequality we have $f(\mathbb{E}[Y]) \leqslant \mathbb{E}[f(r)]$

$$
\begin{aligned}
& \Rightarrow\left(\mathbb{E}\left[x^{q}\right]\right)^{p / q} \leqslant \mathbb{E}\left[\left(x^{q}\right)^{p / q}\right]=\mathbb{E}\left[x^{p}\right] \\
& \Rightarrow \quad\|X\|_{q} \leqslant\|x\|_{p}
\end{aligned}
$$

- Pf of (i) in theorem

$$
\begin{aligned}
& r>s \Rightarrow \mathbb{E}\left[\left|X_{n}-x\right|^{r}\right]^{1 / r} \geqslant \mathbb{E}\left[\left|x_{n}-x\right|^{s}\right]^{1 / s} \\
& \text { Also } X_{n} \xrightarrow{l_{r}} x \Rightarrow \lim _{\lim _{\rightarrow \infty}} \mathbb{E}\left[\left|x_{n}-x\right|^{r}\right]^{1 / r}=0 \\
& \Rightarrow \lim _{n \rightarrow \infty} \mathbb{E}\left[\left.\left|x_{n}-x\right|\right|^{5}\right]^{1 / s}=0 \Rightarrow X_{n} \xrightarrow{l_{s}} x
\end{aligned}
$$

- Pf of (ii) in theorem

$$
x_{n} \xrightarrow{l_{1}} x \Rightarrow \lim _{n \rightarrow \infty} \mathbb{E}\left[\left|x_{n}-x\right|\right]=0
$$

By Markov's Inequality, $\mathbb{P}\left[\left|x_{n}-x\right|>\varepsilon\right] \leq \frac{\mathbb{E}\left[\left|x_{n}-x\right|\right]}{\varepsilon} \quad \begin{array}{ll}\forall \varepsilon>0 \\ \forall n\end{array}$

$$
\Rightarrow \text { for any } \varepsilon>0, \lim _{n \rightarrow \infty} \mathbb{P}\left[X_{n}-\lambda \mid>\varepsilon\right] \leq \lim _{n \rightarrow \infty} \frac{\mathbb{E}[|x-x|]}{\varepsilon}=0
$$

$$
\Rightarrow X_{n} \xrightarrow{p} X
$$

Pf of (iii) in theorem

$$
\begin{equation*}
X_{n} \xrightarrow{P} X \text { and } \mathbb{P}\left[\left|X_{n}\right| \leqslant k\right]=1 \Rightarrow \mathbb{P}[|x| \leq k]=1 \tag{Phis!}
\end{equation*}
$$

Now for any $\gamma \geqslant 1$,

$$
\begin{aligned}
& \mathbb{E}\left[\left|x_{n}-x\right|^{r}\right]= \mathbb{E}\left[\left|x_{n}-x\right|^{r}| | x_{n}-x \mid<\varepsilon\right] \mathbb{P}\left[x_{n}-x \mid<\varepsilon\right] \\
&+\mathbb{E}\left[\frac{\left|x_{n}-x\right|^{r} \mid\left(x_{n}-x \mid \geqslant \varepsilon\right] \mathbb{P}\left[\left|x_{n}-x\right| \geqslant \varepsilon\right]}{s(2 k)^{r}}\right. \\
& \leqslant \varepsilon^{r}(2 k)^{r} \mathbb{P}\left[\left|x_{n}-x\right| \geqslant \varepsilon\right] \\
& \because X_{n} \xrightarrow{p} x, \lim _{n \rightarrow \infty} \mathbb{P}\left[\left|x_{n}-x\right| \geqslant \varepsilon\right]=0 \text { for any } \varepsilon \text {. Finally }
\end{aligned}
$$ we can take $\varepsilon>0$ to get $\mathbb{E}\left[\left(x_{n}-x\right)^{r}\right] \geq 0$

$$
\Rightarrow X_{n} \xrightarrow{r} X
$$

Note-The above style of proof is very typical and important - it will show up repeatedly in this course, starting from next week!

- Markov's Inequality can also be used to give strayar bounds
- (Chebysheo's Inequality) - For any vo X, and $t \geqslant 0$

$$
\begin{aligned}
\mid \mathbb{P}[|X-\mathbb{E}[x]|>\varepsilon] & \leqslant \frac{\operatorname{Var}(x)}{\varepsilon^{2}} \\
\text { Pf } \mid \mathbb{P}[|x-\mathbb{E}[x]|>\varepsilon] & =\mathbb{P}\left[|x-\mathbb{E}[x]|^{2}>\varepsilon^{2}\right] \\
& \leqslant \frac{\mathbb{E}\left[(x-\mathbb{E x})^{2}\right]}{\varepsilon^{2}} \quad \text { (By Markoo's) }
\end{aligned}
$$

The Law of Large Numbers

- The most famous applications of ass and convergence in probability!
- The (Weak Law of Large Numbers) $-\operatorname{Let}\left\{X_{i} ; i \geqslant 1\right\}$ be an ii.d sequence of r.v.s. Then $\frac{1}{n} \sum_{i=1}^{n} x_{n} \xrightarrow{P} \mathbb{E}[x]$
 $\operatorname{Var}\left(S_{n}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(x_{i}\right)=n \operatorname{Var}(x)$
N aw $\mathbb{P}\left[\left|\frac{1}{n} \sum_{i=1}^{n} x_{i}-\mathbb{E}[x]\right|>\varepsilon\right]=\mathbb{P}\left[\left|\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mathbb{E}[x]\right)\right|>\varepsilon\right]$

$$
\begin{aligned}
& =\mathbb{E}\left[\left|S_{n}-\mathbb{E}[x]\right|>\varepsilon\right] \\
& \leqslant \frac{V_{a r}\left(S_{n}\right)}{n^{2}}=\frac{V_{a r}(x)}{n \varepsilon^{2}} \\
\Rightarrow \operatorname{Vim}_{n \rightarrow \infty} \mid \mathbb{P}\left[\left|S_{n}-\mathbb{E}[x]\right|>\varepsilon\right]=a^{2} V_{a_{n}(x)} & =0 \Rightarrow S_{n} \xrightarrow{P} \mathbb{E}[x]
\end{aligned}
$$

- Now we want to convert this to a.S. We will do this via Borel-Cantelli to get the result assuming $\mathbb{E}\left[X^{4}\right]=m_{4}<\alpha$.
Not: : this is a more strict condition than we need for the SLLN-we will see a more general version when we study Martingales

The (Borel's Strong Law of Large Numbers $)$ - Let $\left(x_{i} ; i \geqslant n\right)$ be id γ, θ with $\mathbb{E}\left[x_{i}\right]=\mu$,

$$
\begin{aligned}
& \operatorname{Var}\left(x_{i}\right)=\sigma^{2} \operatorname{and}\left[\mathbb{E}\left[\left(x_{i}-\mu\right)^{4}\right]=m_{4}<\alpha .\right. \text { Then } \\
& \frac{S_{n}}{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \xrightarrow{a \cdot s} \mathbb{E}[x] \\
& \begin{aligned}
P_{f}-\mathbb{P}\left[\left|\frac{S_{n}}{n}-\mu\right|>\varepsilon\right] & =\mathbb{P}\left[\left|s_{n}-\mu\right|^{4}>\varepsilon^{4}\right] \\
& \leqslant \mathbb{E}\left[\left(\frac{\left.\left.S_{n}-\mu\right)^{4}\right] \cdot \frac{1}{\varepsilon^{4}}}{n}\right.\right. \\
& =\frac{\mathbb{E}\left[\left(\sum_{i=1}^{n}\left(x_{i}-\mu\right)\right)^{4}\right]}{n^{4} \varepsilon^{4}}
\end{aligned}
\end{aligned}
$$

Let $Y_{i}=X_{i}-\mu \quad \Rightarrow \mathbb{E}\left[y_{i}\right]=0, V_{a r}\left(y_{i}\right)=\sigma^{2}$
also $y_{i} \Perp y_{j} \Rightarrow \mathbb{E}\left[y_{i} y_{j}^{3}\right]=\mathbb{E}\left[y_{i} y_{j} y_{k} y_{l}\right]=0 \quad \forall_{i, j, k, l}$

$$
\begin{aligned}
\Rightarrow \mathbb{E}\left[\left(\sum_{i=1}^{n} y_{i}\right)^{4}\right] & =\sum_{(i, i, k, k)} \mathbb{E}\left[y_{i} y_{j} y_{k} y_{2}\right] \\
& =n \mathbb{E}\left[y_{i}^{4}\right]+3 n(n-1) \mathbb{E}\left[y_{i}^{2} y_{j}^{2}\right] \\
& =n m_{A}+3 n(n-1) \sigma^{4}
\end{aligned}
$$

$$
\Rightarrow \mathbb{P}\left[\frac{\left\lvert\, \frac{s_{n}-\mu \mid>\varepsilon}{n}\right.}{B_{n}(\varepsilon)}\right] \leqslant \frac{m_{4}}{n^{3} \varepsilon^{4}}+\frac{3 \sigma^{4}}{n^{2} \varepsilon^{4}}
$$

(Bowel Cantellif)
Now since $\sum_{n=1}^{\infty} B_{n}(\varepsilon)<\alpha \forall \varepsilon \Rightarrow \mathbb{P}\left[B_{n}(\varepsilon) ; \theta\right]=0$

$$
\Rightarrow \frac{S_{n}}{n} \xrightarrow{a s} \mu
$$

Weak Convergence

- Unlike all the previous notions of convergence, convergence in distribution does not need X_{n}, X to be on the same (Ω, T, \mathbb{P}).
- Even other wise, the idea is somenhat counterintuitive...

Eg-Let $X \sim \operatorname{Bernoulli}(1 / 2)$, and X_{1}, X_{2}, \ldots be identical $r \cdot \theta$. given by $X_{n}=X$ for all n.

- X_{n} are not independent, but clearly $X_{n} \xrightarrow{d} X\binom{$ and indeed }{ all modes , con $\operatorname{con}!}$
- Now let $Y=1-X . \because X$ and Y have the same distribution

$$
\Rightarrow X_{n} \xrightarrow{d} Y \text {. Note though that }\left|x_{n}-y\right|=1 \quad \forall n!
$$

- Another aspect to get used to is that $X_{n} \xrightarrow{d} X$ only requires $\lim _{n \rightarrow \infty} F_{n}(t)=F(t)$ at continuity points of $F(\cdot)$

Eg- Let X be any riv., and $X_{n}=X+1 / n$

$$
\Rightarrow F_{n}(t)=\mathbb{P}\left[x_{n} \leqslant t\right]=\mathbb{P}[x \leqslant t-1 / n]=F(t-1 / n)
$$

Thus $\lim _{t \rightarrow \infty} F(t-1 / n)=F(t)$, but only at points where
F is continuous - this is because we defined F in a way that it is RCLL (continuous from the right, but only having a limit from the left). However, we do not want this arbitrary convention to make us decide such an example is not converging in dist ribution (it would if we assumed LCRL...)

- So if convergence in distribution is 'weak', why do we care. Should we not always strive for $X_{n} \stackrel{\text { as }}{\longrightarrow} X$?
Not so fast.
Thu (Skorohod Representation Theorem) Given r.v.s $\left(X_{n} ; n \geqslant 1\right)$ and X, with distributions $\left(F_{n} ; n \geqslant 0\right)$ and F, st $X_{n} \xrightarrow{d} X\left(\right.$ ie. $\left.F_{n}(t) \rightarrow F(t)\right)$. Then \square probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and $\operatorname{ros}\left(Y_{n} ; n \geqslant 1\right)$ and Y on $(\Omega, \mathcal{F}, \mathbb{P})$ sit the following are true i) $Y_{n} \sim F_{n} \forall n, Y \sim F$ ii) $Y_{n} \xrightarrow{\text { a.s }} Y$
- This is a somewhat magical theorem, and one of the first examples you will see of a 'probabilistic way of thinking'. Essentially, it takes a setting, moves it to another space using 'probability magic', and then get a very different property!
- The proof though, is 'elementary' - it constructs $(\Omega, \mathcal{F}, \mathbb{P}), Y_{n}, Y$ in a 'natural' way, and then carefully mike sure all definitions work

Proof - First, we choose $\Omega=(0,1)$, $\bar{\tau}=B(0,1)$ (ie, the Borel σ-algebra on $(0,1))$, and \mathbb{P} as the Lebesgue measure (ie, the 'usual' notion of length).

- Now we define Y_{n}, Y in a 'natural' way

$$
\begin{aligned}
& Y_{n}(\omega)=\inf _{x}\left\{\omega \in(0,1) \mid \omega \leqslant F_{n}(x)\right\} \\
& Y(\omega)=\inf _{x}\{\omega \in(0,1) \mid \omega \leqslant F(x)\}
\end{aligned}
$$

This is the natural notion of the inverse fun of F_{n}, F

- Note that by definition, we have shown (i)!

$$
\begin{aligned}
& \mathbb{P}\left[y_{n} \leqslant x\right]=\mathbb{P}\left[\left\{\omega \in\left[0, F_{n}(x)\right]\right\}\right]=F_{n}(x) \\
& \mathbb{P}[y \leqslant x]=\mathbb{P}[\{\omega \in[0, F(x)]\}]=F(x)
\end{aligned}
$$

- Finally we want to argue that $\mathbb{P}\left[y_{n} \leq x\right]$ converges to $\mathbb{P}[y \leqslant x]$ for all 'continuity points' of $F(x)$. If $F_{n} F_{\text {are }}$ absolutely contin wows, then this is true by definition! (Essentially $Y_{n}=F_{n}^{-1}(U), Y=F^{-1}(U)$)
- Else, for w prof continuity ad $\varepsilon>0$, we pick x as apt of continuity sit. $Y(\omega)-\varepsilon<x<y(\omega)$ ad $x<y_{n}(\omega)$ for large enough $n \Rightarrow \operatorname{limin}_{n \rightarrow \infty} Y_{n}(\omega) \geqslant Y(\omega) \forall \omega \in \Omega^{\prime}$
- Similarly show $\limsup _{n \rightarrow \infty} Y_{n}(\omega) \leqslant Y(\omega) \forall \omega \in \Omega^{\prime}$
- Combining we get $Y_{n}(w) \rightarrow y(w)$ for all points w of continuity of Y.
- Finally we use the following fact 三 Any monotone nou-decreasiny f_{n} on a compact set has a countable \# of discontinuities

$$
\Rightarrow Y_{n}(\omega) \rightarrow Y(\omega) \text { for almost all } \omega \text { ! }
$$

Note- The above proof is somewhat technical, and only given for illustration - its of for this course if you do not get all the continuity details! The result though is super useful, for eg, for the following The - Suppose $X_{n} \xrightarrow{d} X$. Then
i) $g\left(x_{n}\right) \xrightarrow{d} g(x)$ for all continuous frs g
ii) $\mathbb{E}\left[g\left(x_{n}\right)\right] \longrightarrow \mathbb{E}[g(x)]$ for all bounded conf fin g

Pf -For (i), consider the Y as y from the Skorohod representation. Then $g\left(y_{n}\right) \xrightarrow{\text { ass }} g(y) \Rightarrow g\left(x_{n}\right) \xrightarrow{d} g(x)$ For(ii), use bounded convergence

Summary

- For $\left\{X_{n}, n \geqslant 0\right\}, X$ on same $(\Omega, \mathcal{F}, \mathbb{P})$
- $X_{n} \xrightarrow{\text { ass }} X$ if $\mathbb{P}\left[\lim _{n \rightarrow \infty} X_{n}=X\right]=1$
- $X_{n} \xrightarrow{P} X$ if $\lim _{n \rightarrow \infty} \mathbb{P}\left[\left|X_{n}-x\right|>\varepsilon\right]=0 \quad \forall \varepsilon>0$
$-\quad X_{n} \xrightarrow{l_{q}} X$ if $\lim _{n \rightarrow \infty}\left\|X_{n}\right\|_{q}=\|X\|_{q}$, where $\|X\|_{q}=\left(\mathbb{E}[|x| i]^{1 / q}\right.$
- For any $X_{n} \sim F_{n}, X \sim F, X_{n} \xrightarrow{d} X$ if $\lim _{n \rightarrow \infty} F_{n}(t)=F(t)$ for all t points of continuity of F

$(p>q) l_{p} \rightarrow l_{q} \rightarrow \ell_{1} \rightarrow l_{\mid f}\left|x_{n}\right|<k$ ass

$$
\begin{aligned}
& \text { - } \quad X_{n} \xrightarrow{d} X \Rightarrow Y_{n} \sim F_{n}, Y \sim F, Y_{n} \xrightarrow{\text { ass }} Y\binom{\text { SRorrod hod }}{\text { Vepresendidon }} \\
& X_{n} \xrightarrow{d} X \Rightarrow g\left(X_{n}\right) \xrightarrow{d} g(x) \text { for continuous } g \\
& \Leftrightarrow \mathbb{E}\left[g\left(x_{n}\right)\right] \rightarrow \mathbb{E}[g(x)] \text { for bounded cont } g \\
& \text { - } \forall x \geqslant 0, \mathbb{P}[x \geq a] \leqslant \mathbb{E}[x] / a \quad \text { (Markov's lneq) } \\
& \text { - } \forall x \text {, if } f \text { is convex } \Rightarrow f(\mathbb{E}[x]) \leqslant \mathbb{E}[f(x)] \text { (Jensen's hel) }
\end{aligned}
$$

