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Limit Theorems and Convergence of S.o.s
#

• When we work with complex random systems , or stochastic
processes , we are often interested in the limiting
behavior of such processes , i.e . , we want to say
-

hXn=XJ ,

where Xn
,
X are ro

.

-

It turns out however that there are multiple ways to

define such a notion
,
with different properties and

applications of each .

The strongest ( but least useful) is :

1) Point - wise Convergence - A sequence of no. (xn in31) on (R, F. P)
converges pointwise to no. X on CD,Fip) if

Ling
,

Xn (o) = X (w) f WER

• Staying with Xn and X on the same space , we have 3 more. modes

2) Almost - Sure Convergence - A sequence of re Hn : n 71 ) on
(r , F, IP) converges almost - surely to v.v.

X in (r
,
F. IP) if

IPL lines. Xn
-

- X ] -- L (notation : Xn⇒X)
3) Convergence in Probability - A sequence of ro. (Xn : n 31) on
@,
F
,
P) converges in probability to ro X in (D,F, B) if
HE > O

,
hire
.
lP[ Ix - Xnl > 4=0 (notation :XnP→X)

4) Converges in lp - A sequence of ro. (xn : n > 1) on (RFID converges
to re

.

X in (RFP) in lp far p> 1 if (notation : Xn -1)
limallxn -Mp -

- O
,

where Hxn - Xllp =@fkn-xp) )"P



• The operator (i.e. , function acting on functions) H . Hp is called

the lip - norm
,
and is a way to measure

'

distance
'

between

objects , in this case
,
between nos

.

There are two

particular values of p which we are usually interested in
convergence in Mean (f- t) - LimaEll xn -xD = 0

Convergence in Mean-Square (p -- 2) - hi;fE[(xn-x)7)
"2=0 41¥59:)

• All of the above were for Xn and X on the same (R
,
F
,
IP)

.

The final mode of convergence is special in that it does
not even require this !

5) Convergence in Distribution (or Weak Convergence) - A sequence of
t.ro

.

Xn converges to a re X in distribution if
Ling
,

E ft) -- FA) F TER at which FAI is continuous notation:k¥1#
• Why so many notions ? In a way , this reflects the richness of
probability , in that it combines an underlying sets, aprobability
function on sets in the 5- field , functions Xo) on D (res)

,

distribution functions of these r.v. , and their properties
(expectation, variance, etc . )

. Importantly ,they are related as
(Xin X)⇒ (*⇒⇒ (xn # X)p>931

Knees x) ⇒ Knbrx) ⇒ (Xn#x) ( implication diagram of
the modes of convergence)



We now build some intuition behind each definition
Convergence in almost - sure vs in probability
-

• These are concerned with the probability of events
under vies (Xn in>l) and X defined on a common
space CBF, IP) . They differ in the ' relative position '

of the IP and lim operators

finna IP [Xn
'

=

'

X] -- O vs Pliny Xu-- X) = O
--

XnIsXXn-#
Ef - Let {Xn; h 313 be the following say

" of ro. on uniform 10,1
'

E
. ii. i .

it is:i÷÷÷i÷÷÷÷ii÷÷÷:*:÷÷:*,
• To check if Xn X for some X

,
fix any w and consider the

sequence hits, X slot . . . ) . Observe that tiny Xnlwl does not exist !
⇒ Xn does not converge a. s. to any r.o.

• However , note also that lpfxn >o) = out⇒ O

⇒ him
.

PIK - ol > 4=0 HE ⇒ Xn Es O



• A more useful way to think of this is via the

set of Bad Events Bn (e) = Ew I lxnlwtxlwll > e}
and the tail set of bad events BY Cetfwllxnlutxkt > E Fk Zn}
- Now by defn , XnEs X if fins. PLBNKD = O
- On the other hand

,
let C. = {ol line

.

Xn H XH }
then by defn Xn X if PK] = I

=

- Now note that . Bn(E) J Bild
* I

• B. (e) E Bale) E . . .

(by sequential continuity) ⇒ his.PLBite)] = IPL B:(e) )
• C E E

.

Biles ⇒Pkk PLEBiced
⇒ If Xn X

,
then IPL BileD= I

- Also since IPEBNLE)] ZipfBild) th
⇒ 1%1Places] > ±

.

PCBIKB = I

Thus Xn X ⇒ XnP→X

. Thinking about bad sets also allows us to get a partial converse
First we need an additional defn .

Def - Given a sequence of events ft n in>D , the event An occurs
infinitely often (or {An i.o .

} ) is defined as
{An i.of = { w I WEAN for infinitely manyn} = An



• Lemma (Borel - Cantell i lemmas) - Let# in> 1) be a
sequence of events .

Then
i) PEAK - ⇒ Plan i. o

.

] -- O

linkedin.tt/Anareindependentandn&PfAnI--a.z7lPfAni.o.
Pf . Note that In An 2 LEA . III.An -

- .

⇒ PEE Antlia
.

PLEAD Gettin ' ¥
Also PLEADS EPI.Ad (8%11
and since E.PEAK a ⇒him

.

PLANT -0
⇒ PIAniof-IPE.nu?ADE!n.EPAnI=

• For the converse
,
wt

.e.g assume PLAN] 70K> I
then III (t - READ ) s IIe

- Paik e- IMAD -- O by def

Also since Ak are I ⇒ PlainAIT LI ft - plat )
= O

⇒ plaintiff- Phi
.
AI) -- I

⇒ PLAN i o ) = EE Ih IAD -- I



• Now returning to Xn X vs Xu
Tht i) Xn ⇒ Xn tsx

ii) Xn X lie
. Lins
. PlBnk¥g ) and E.Placed"HE>O

⇒ Xu

x.RFbadeoents.convergenoeinprobabilifgvslp-IBIX.to
• While Xn Es X implies that IP [ Bdd) is small

,

it does not say anything about lxnlwt -Hull footBnfd
.

This extra ' control ' is ensured by lp convergence .

• lp norm HY Hp E (EGYPT)YP is a norm on r.o.fr pH
i) H aYHp= ally Hp ii) HYHP -- O ⇒ 4-Oas⇒pipeties!) Ily +zip ⇐ Hyllp TH 2-Hp (triangle inequality)
→

Ef - Consider (xn in> o) where Xn-faonfgowEG.tn]
-

← For
and an , we have PL Brees]= Hn b O t E >O

- If an b O ,
then Platinakid -03=1 ⇒Xn X

(Note - I!P[Bald) =L but Ben not iid ⇒ can't use Borel Cartelli )
- (Elk -Dj)" = any ⇒ for Xn X

,
we need him

. any =O



Thin - Convergence in p and lp are related as follows
i ) tf r > s> I

,
then Xntrsx ⇒ Xn les X

ii) If Xn les X ⇒ Xn is X

iii) If Xn Is X and lpfxnsk]= I Fn for some k

thenXn-sXfraHr#
We first need 2 inequalities , which on their own
are perhaps more useful !

• (Mar Koo's Inequality) For any non-negative ro
Z

,
and

any a > 0

PIZZA] E EET la
Pf - observethat (a Ike> as) Z x the 30
⇒ EEKEla . Heard a!÷i÷a

= a PEZ > a t
• (Jensen's Inequality) - Given any ro Z and f f

i) Iff is convex ⇒ Eff HEED

it If f- is concave ⇒ EACH] SHEED
(We will see this in more detail in the assignment)



• Proposition - tf p>g> I , then HX Hp 3 Hxllq

Pf - For x>o
,
let floc) =zMg⇒ f- Ex) -- fgfeg - t ) od"-230

for all p > g ⇒ f is convex
Also given any r.o. X

,
let y = X ar .

By Jensen's Inequality we have f LEEDS EffHD

⇒ (Efxar))Mar E Effy"g - E
⇒HXHgEHX

. Pf ofit in theorem
I⇒E[lxn-xi]Yr 3 E fun- x
Also XnEx ⇒ Lisa Ekin -xi ]" = o

⇒ ¥zE[kn-x lls ] 's = o ⇒ Xn⇐ ×

• Pfofiilintheoremxnlsx⇒ finna EGxn -xD ⇒

By Markov's Inequality . Pflxn-H>Ek Efxz Into
⇒ for any E>o, his PKK-H >e) Elias.EE#IxD-- O
⇒ Xn Ex



. Pf of (iii ) in -theorem

fixated =L ⇒ PIXIE bit =L His7)
Now for any r 31 ,
I

Eflxn -H) = IEfkn -xtrlxn-XK E) lpflxn -xke]
+ E[Hn-XIrl Hn -Xl> Eflpflxn-XI ZE]

#(2k)'

S E t@k5lPflxn-xl3EJiXnEsX.tins PIK-H >If = O for any E . Finally
we can take Esso to get Eflxnx IT to
⇒ Xn Is X

Not#tyefpfy
typical and important - it will show up repeatedly
inthiscoursgstartingfromnextueek

• Markov's Inequality can also be used to give stronger bands
- (Chebyshev's Inequality) - For any r . o.

X
,
and t 30

Pdx - EGIL > EH VaE#
Pf - Pdx- East > E) = IPA x - EGM> ET

⇐ EkxfE (By Markov's)
ka



The Law of Large Numbers
-

• The most famous applications of a.s and p
convergence in probability !

•them (weak Law of Large Numbers) - Let {Xiii31 } be an
ii. d sequence of r . v. s .

Then I÷ExnP→ EG]
If XIY
Varkey) =

If - Let Sn= E.Xi ⇒ ELSIE EiEGiIn EGE rarcxttkrt

Var (Sn) = Ei Varlxikn Var (x)
Now Pfl 's Epi - EGIL > E) =Pft 's Edi - EEDI > If

= EG - Efx31 >a

varlaxt-a.ua#SVnzarefI= k¥1
⇒ finalPfl Sn -E I > e] =o⇒SnP→E[x]

• Now we want to convert this to a.s .
We

will do this via Borel - Cartelli to get the
result assuming E[X4] = me, ex .

Note : this is a more strict condition than we need for the SUN - we
will see a more general version when we study Martingales



Them(Borel 's Strong Law of Large Numbers) - Let
(Xii is n) be iid ro.

with Elxi] tu ,
Van (Xi) =P and Elli -httMasa

.

Then

E- In Epi Efx]

If - Bley -al > If = Pll 14 > ED

f. EKE -halo tea
= EEE

,

ki -uh'T

Let Yi = Xi -µ ⇒ Effi] -- O
,

Van Gil --T
also Yi I Yj ⇒ Et [Yi Ys? ] = Effi Yi YuYe] = 0 Hi,j , k, l

⇒ tell Yi )4) = a;;%,E[Yiyiynye]
distinct

= n Effy -13nA-HE if
= n ma + 3n(n- t) r 't

⇒ PflEDEnm¥at3¥ea (Bovet cantellit
Now since

'

Bnce) La tf E ⇒ P[Bnkliio
.

3=0

⇒ she u



weakconoe.rgence.ae
Unlike all the previous notions of convergence, convergence
in distribution does not need Xn

,

"

X
' to be on the same (r

,
F. Pl

.

o.Evenotherwise.the.io/eaissomewhatcounterintuiti#Eg- Let X n Bernoulli (Yz)
,
and Xi

,
Xz
,

. . .

be identical r
.

o
.

given by Xn --X for all n
.

- Xn are not independent , but clearly Xn#X fail in! Io !)
- Now let Y= I - X

.

°

: X and Y have the same distribution

IXnd-sY.NO/-ethoughthatlXn-YI=tt#
• Another aspect to get used to is that Xnd→X only requires
tiny Fn LH ⇐ Fft) at continuity points of Ff )

Ef-LetXbeanyX=XY
⇒ Fft) = past] =P Et - yn] = Fft - yn)
thus fig. Flt -

'Int = FH
,
but Latitude

Eischens - this is because we defined F in a
way that it is RC LL (continuous fromthe right , but only
having a limit from the left) .

However
,
we do not want

this arbitrary convention to make us decide such an example
is not converging in distribution (it would if we assumed LCRL . . . )



• So if convergence in distribution is
'
weak; why do

we care .

Should we not always strive for Xn X ?

Not so fast . . .

The(Skovohod RepresentationTheorem) Given
res (Xn in> 1) and X

,
with distributions in30)

and F
,
rs.tl/nd-sXlie.EH-sFAt )

.

Then F
probability space (R, F, P) and res (Yn ; n> t )
and Y on (R

, F. IP ) set the following are true
i) Yn - Fn Fn

,
Y - F

ii) Yn y

• This is a somewhat magical theorem , and one of the
first examples you will see of a ' probabilistic
way of thinking

'

. Essentially , it takes a setting ,
moves it to another space using

' probability magic;
and then get a very different property !

•
The proof though , is

'

elementary ' - it constructs
(R

,
F
,
IP)

,
Yn
,
Y in a

'

natural ' way , and then

carefully make sure all definitions work
.



Proof - First
,
we choose D= ( o

,
1)
,
F -Bb

,
D

( i.e.
,
the Borel r-algebra on (o, i ) ) , and IP as

the Lebesgue measure (ie , the
' usual ' notion of

length) .

- Now we define Yn
,

Y in a
"

natural
'

way
Ynlw) = isnt { WE G. ill WE Fn Gd 3
Y (w) = isnt { WE 6,11 I w f FLA)

this is the natural notion of the inverse fu of E
,

F

- Note that by definition , we have shown (i ) !
IP [Yn 's x] = PEEWEE, El = Ex)

IP [ Y E x] = Pk we G. FED 's] -- Fla)
- Finally we want to argue that Pkn Ex] coinages
to PLY E a] far all

'

continuity points ' of Fla) .

If Fl absolutely continuous, then this is true
by III.iii.on ! (essentially '⇐ FIN), Yee - 'WH
- Else

,
for wptof continuity ad Eso , we pick 2e as apt of

continuity sit . 'Kw) - Eca%) ad Kahlo) fer
large enough ⇒ limit Ynlu)>YUH WEI



- Similarly show lineup KID E Y lol tf w E r
-

- Combining we get Yn Co)→Ylw) for all

points w of continuity of Y .
- Finally we use the following fact = Any monotone

non- deereasing f n on a compact set has a
countable # of discontinuities

⇒Ynlw)→Ylw)tralmostaN#
Note - The above proof is somewhat technical

,
and

only given for illustration - its offerthis course if
you do not get all the continuity details !
The result though is super useful, for e.g,tutte following
#

them - Suppose Xn Is X .

Then

i) g (xn) Es g (x) for all continuous fog
ii) Efg (xn)] → EfgGD for all bounded at fng
PI - For lil

,
consider the Yn Y from the Skorohod

representation .
Then gun) Es g Cy ) ⇒ g (xn) # g (x)

For
,
use bounded convergence



Summaries
• For {Xnin 303

,
X on same Gr, F. IP)

- Xn X if lP[laXn=X] =L
- XnP→X if k's.PE/Xn-xlsE3=OV- E> o
- Xn # X if Lisnallxnllg -- Hxllg , where HXHq=fEAx %

•
For any Xn - Fn, Xue, Xntsx if Li;fnH=FH

for all t point-scoring of F

•
as THE.PH#bEkaV-E30(BEnefeni)→

p
lp→ lq→f,→
→ d

479) e)if Hakkas
• Xnd→X⇒YvE

,
Yn KEY:E¥atia)

d
Xnd→X ⇒ glxn)→ glx) for continuous g

⇐ Ecg → Efeglxl] for bounded contg
• FX>o

,

lP[Xza] EEG]/a (Markov's keg)

• FX
, if fisconoex⇒ HEAD)EEffLxB(Jensen 's keg)


