Probability Background

- Probability spaces
- Random variables
- Expectation
- Basic facts from analysis

$$
\text { - Probability space } \begin{aligned}
& \equiv(\Omega, \mathcal{J}, \mathbb{P}) \\
& \text { sample space } \uparrow \text { field } \\
& \text { (or } \sigma \text {-algebras }
\end{aligned}
$$

- $\Omega \equiv$ set of all possible outcomes of an expt
- F \equiv collection of subsets of Ω with 3 prop -

$$
\text { i) } \Omega \in J
$$

ii) $A \in \mathcal{F} \Rightarrow \bar{A} \in \mathcal{F}$
iii) $A_{1}, A_{2}, \ldots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_{i} \in \mathcal{F}$

- $\operatorname{Eg}-(\Omega, \phi),(\Omega, \phi, A, \bar{A}), 2^{\Omega}$ for discrete Ω
- Prop n - For any collection C of subsets of Ω, \exists a smallest σ-field $\sigma(C)$ that contains C
- Defn - For any net sic space $\Omega\left(\right.$ egg. $\left.\mathbb{R}^{n}\right)$, et θ denote the collection of all open subsets of Ω. Then the Bored σ-field $B(\Omega)=\sigma(\theta)$
- In particular, for \mathbb{R}, let $I=\{-\infty, \infty] \mid a \in \mathbb{R}\}$ be the set of closed intervals. Ten

$$
B(\mathbb{R})=\sigma(I)
$$

ie., $B(\mathbb{R})$ is the smallest σ-field containing all closed intervals (works also fr open interwar)
Note: This is a non-constanctive definition. However, one can construct sets which are not in $B(\mathbb{R})$!
(See wikipedia \rightarrow Vitali set)
$\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ is a probability measure on σ-field \mathcal{F} if
i) $\mathbb{P}[\Omega]=1$
ii) $\mathbb{P}[A] \in[0,1] \forall A \in \mathcal{F}$
iii) For $A_{1}, A_{2}, \ldots \in \mathcal{F}$ st $A_{i} \cap A_{j}=\phi \forall i, j$

$$
\mathbb{P}\left[\bigcup_{i=1}^{\infty} A_{i}\right]=\sum_{i=1}^{\infty} \mathbb{P}\left[A_{i}\right]
$$

(Komogorov's Axioms)

- The above axioms imply the foll
i) $\mathbb{P}[\phi]=0$
ii) If $A \subseteq B$, then $\mathbb{P}[A] \leqslant \mathbb{P}[B]$

$$
\text { ii) } \mathbb{P}[\bar{A}]=1-\mathbb{P}[A]
$$

iv) For any $A_{1}, A_{2}, \ldots \in \mathcal{} 1$ $\binom{$ Union }{ bound } $\mathbb{P}\left[\bigcup_{i=1}^{\infty} A_{i}\right] \leqslant \sum_{i=1}^{\infty} \mathbb{P}\left[A_{i}\right]$
v) Given $A_{1}, A_{2}, \ldots \in \mathcal{F}$ st $\mathbb{P}\left[A_{i}\right]=0 \forall i$, then $\mathbb{P}\left[\sum_{i=1}^{\infty} A_{i}\right]=0$ (Omessuse or neligite)
vi) Given $A_{1}, A_{2}, \ldots \mathcal{A}$ st $A_{i} \subseteq A_{i+1} \forall i$ then $\mathbb{P}\left[\begin{array}{c}\infty \\ \vdots=1 \\ \substack{1 \\ A_{i}}\end{array}\right]=\lim _{i \rightarrow \infty} \mathbb{P}\left[A_{i}\right]$ (Sequential continuity) $\begin{aligned} & \text { Try proving } \\ & \text { thees fred up }\end{aligned}$

- Random variable इ'measurable' fr on Ω
- Afn $f:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, B)$ is measurable if $\forall A \in B$, we have $f^{-1}(A) \in \mathcal{I}$
- In this course, we will mostly ignore measurability - however in more complex settings, one needs to be careful...)
- Def - A random variable X on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a measurable $f_{n} X: S \rightarrow \mathbb{R}$

Almost sure

- We are interested in all events which are non-negligible (ie., all A st $\mathbb{P}[A]>0$).
Defn - For given $(\Omega, \mathcal{F}, \mathbb{P})$, a property P holds a most swell if $\mathbb{P}[\{\omega \mid \omega$ satisfies $P\}]=1$
- Similarly for roves X, Y, we say $X=Y$ almost surely (or $X=Y_{\text {ass. }}$) if

$$
\mathbb{P}[\{\omega \mid X(\omega) \neq Y(\omega)\}]=0
$$

- The signature feature of a random variable X is its cumulative distribilion

$$
f_{n} F: \mathbb{R} \rightarrow[0,1], F(t)=\mathbb{P}[x \leq t]
$$

- recall the Borel σ-field $B(\mathbb{R})$ was constructed using only (dosed) intervals $(-\alpha, t]$
- the \leqslant is a convention; we could have as well defined it as $\mathbb{P}[x<t]$. This would correspond to constructing $B(\mathbb{R})$ using open intervals..
- CDFs are awesome! All random variables have one.

Propenties of CDFs

- $\lim _{t \rightarrow-\infty} F(t)=0, \lim _{t \rightarrow \infty} F(t)=1$
- F is non-decreasing
- F is RCll (Right continuous)

This is a consequence of \leq convertm

- Every non-decreasing, RCLL fn from O to 1 is a CDF for some $X \ldots$
- random variables can be discrete as catinuons

$$
\begin{array}{l|l}
\text { Discrete } & (\text { Absolutely) Continuous } \\
-\exists x_{1}, x_{2}, \ldots \in \mathbb{R} \text { sit } & -\exists f_{h} f: \mathbb{R} \rightarrow \mathbb{R}^{t} \text { st. } \\
\sum_{i=1}^{\infty} \mathbb{P}\left[X=x_{i}\right]=1 & F(t)=\int_{-\infty}^{t} f(x) d x \\
-p\left(x_{i}\right)=\mathbb{P}\left[X=x_{i}\right] & \text { probability density fun (P if) } \\
\text { probability mass } f_{n}(P m f) & -\mathbb{P}[X=x]=0 \quad \forall x \in \mathbb{R} \\
-F(t)=\sum_{x_{i} \leq t} P\left(x_{i}\right) &
\end{array}
$$

- See Ch 2.1 of Brémand (DisePnob)for exam ples of distributions
Discrete: Bernoulli (p), Binomial (n, p),
Geometric (p), Poisson (λ)
geometric (P), Poisson (λ)
Multinomial $\left(m, p_{1}, P_{2}, \ldots, P_{n}\right)=\left(\begin{array}{l}m \text { balls in } \\ n \\ \text { bins }\end{array}\right)$
Continuous: Uniform (a, b), Gaussian $N\left(\mu, \sigma^{2}\right)$ Exponential (λ)
(for the last two, see Bremand-Makeor (hins)
- Random Vectors \equiv Collection of san dom variables $\left(X_{i}\right)_{i \in I}$ on prob space $(\Omega, \mathcal{F}, \mathbb{P})$
- Joint distribution fr $F: \mathbb{R}^{n} \rightarrow[0,1]$

$$
F\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\mathbb{P}\left[\left(x_{1} \leq t_{1}\right) \cap\left(x_{2} \leq t_{2}\right) \cap \ldots\left(x_{n} x_{t} t\right)\right]
$$

Independence - 2 events $A, B \in \mathcal{F}$
are indep if $\mathbb{P}[A \cap B]=\mathbb{P}[A] \mathbb{P}[B]$

- Different from mutually exchusive/dis joint
- For events $A_{1}, A_{2}, \ldots, A_{n}$
- $\mathbb{P}\left[A_{i} \cap A_{j}\right]=\mathbb{P}\left[A_{i}\right] \mathbb{P}\left[A_{j}\right] \forall \forall_{i, j}$
$\Rightarrow A_{i}$'s wren pairwise independent

$$
-\mathbb{P}\left[\bigcap_{i=1}^{\hat{1}} A_{i}\right]=\prod_{i=1} \mathbb{P}\left[A_{i}\right]
$$

$\Rightarrow A_{i}$'s are mutually independent

2 random variables X, Y are independent if $\forall x, y \in \Omega$

$$
\mathbb{P}[X=x, y=y]=\mathbb{P}[x=x] \mathbb{P}[y=y]
$$

- roo X, Y are said to be conditionally independent given z if $\forall x, y, z$, we have $\mathbb{P}[X=x, Y=y \mid Z=z]=\mathbb{P}[X=x \mid z=z] \mathbb{P}[y=y \mid z=z]$ (see Brémand for conditional probability)
- Notation- X,Y independent is written as $X \perp Y$

Expectation

- We will focus first on discrete s. v

Defn-For r.ध. X taking values in countable set E, and function $g: E \rightarrow \mathbb{R}$ st either g is non-negative or $\sum_{x \in E}|g(x)| p_{i}(x)<$ integrable $^{\infty}$ then $\mathbb{E}[g(x)]=\sum_{x \in E} \underbrace{p(x)}_{\operatorname{panf}} \underset{\mathbb{P}[x=x]}{g(x)}$
An important example

- For any $A \in \mathcal{F}, \mathbb{E}\left[\mathbb{1}_{A}\right]=\mathbb{P}[A]$ where $\mathbb{I}_{A} \equiv$ indicators s. $ง ~\left(\mathbb{I}_{A}=\left\{\begin{array}{l}\text { if A A he } \\ 0 \text { on }\end{array}\right)\right.$
- Indicator so are very useful for computations!!

For continuous distributions

- Suppose X has pdf $f(i e$, absontinte $)$ then $E[g(x)]=\int_{-\infty}^{\alpha} g(x) f(x) d x$ for any g sit $\int_{-\infty}^{\alpha}|g(x)| f(x) d z<\alpha$
- More generally, X could be discrete + continuous
- FACT - Any CDF F has only a countable number of jumps
- Let $\left\{d_{n}\right\}_{n \geqslant 1}$ be the discontinuity points for a given $C D F F$

$$
F_{d}(t) \triangleq \sum_{\left.d_{n} \leq t t_{\text {jumps' }}\left(F_{\text {jun }}\right), F\left(d_{n}^{d}\right)\right), F_{c}(t)=F(t)-F_{d}(t)}^{\text {'continuous pat' }}
$$

then $\mathbb{E}[g(x)]=\int_{-\infty}^{\infty} g(x) d F(x)$
'the Lebesque integal of g w.t massue F^{\prime}

$$
\begin{aligned}
& =\sum_{n=1}^{\infty} g\left(d_{n}\right)\left(F\left(d_{n}\right)-F\left(d_{n}^{-1}\right)\right) \\
& +\int_{-\infty}^{\infty} g(x) f_{c}(x) d x
\end{aligned}
$$

Where $f_{c}(x)$ is a function such that $F_{c}(t)=\int_{-\infty}^{x} f_{c}(x) d x$

$$
\text { (i.e., } \left.f_{c}(x)=\frac{d}{d x} F_{c}(x)\right)
$$

Properties of $\mathbb{E}[x]$
i) Linearity of Expectation

$$
\mathbb{E}\left[\lambda_{1} g_{1}(x)+\lambda_{2} g_{2}(x)\right]=\lambda_{1} \mathbb{E}\left[g_{1}(x)\right]+\lambda_{2} \mathbb{E}\left[g_{2}(x)\right]
$$

for any $\lambda_{1}, \lambda_{2} \in \mathbb{R}, g_{1}, g_{2}$ integrable
ii) For g_{1}, g_{2} st $g_{1}(x) \leqslant g_{2}(x) \forall x \in \mathbb{R}$

$$
\Rightarrow \quad \mathbb{E}\left[g_{1}(x)\right] \leq \mathbb{E}\left[g_{2}(x)\right] \text { (mandonicity) }
$$

iii) If $x \mathbb{1} y \Rightarrow \mathbb{E}[g(x) h(y)]=\mathbb{E}[g(x)] \mathbb{E}[L(x)]$
iv) For $x \geqslant 0($ ie, $\mathbb{P}[x<0]=0)$

$$
\mathbb{E}[x]=\int_{0}^{\infty}(1-F(t)) d t
$$

In particular, if $X \in \mathbb{N}$, then

$$
\mathbb{E}[x]=\sum_{n=1}^{x} \mathbb{P}[x \geqslant n]
$$

Mean, variance, moments

- Mean $\mu=\mathbb{E}[X]$

Variance $\sigma^{2}=\mathbb{E}\left[(X-\mu)^{2}\right]$

$$
=\mathbb{E}\left[x^{2}\right]-(\mathbb{E}[x])^{2}
$$

- Raw moments - $m_{k}=\mathbb{E}\left[x^{k}\right]$

Centered moments $-\sigma_{k}=\mathbb{E}\left[(x-\mu)^{k}\right]$

- If $x_{1} \Perp x_{2}, y=x_{1}+x_{2}$
then $\sigma_{k}(y)=\sigma_{k}\left(x_{1}\right)+\sigma_{k}\left(x_{2}\right)$
$\left(\begin{array}{l}\text { However, for mean, this is clares } \\ \text { trave thanks to linearity! }\end{array}\right.$

Some useful facts about integration

- An important part of analysis/measure theory is to formalize the notion of the integral. For ow r class, we will just need some important results that come out of this formalism
- Consider a sequence of random variables X_{1}, X_{2}, \ldots
i) If $X_{n}(\omega) \geqslant 0$ ass. and $X_{n}(\omega) \leqslant X_{n+1}(\omega)$ as. for all n, then

$$
\lim _{n \rightarrow \alpha} \mathbb{E}\left[X_{n}\right]=\mathbb{E}\left[\operatorname{Lim}_{n \rightarrow \alpha} x_{n}\right]
$$

(monotone convergence)
ii) If $\left|X_{n}(\omega)\right| \leq Y(\omega)$ ass. for all n, and $\mathbb{E}[Y \mid]<\alpha$, then (dominated) $)$

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[x_{n}\right]=\mathbb{E}\left[\lim _{n \rightarrow \infty} x_{n}\right]
$$

iii) If $\left|x_{n}(\omega)\right| \leqslant c$ ass for all n, then

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[x_{n}\right]=\mathbb{E}\left[\lim _{n \rightarrow \infty} x_{n}\right]\binom{\text { bombed }}{\text { comegeae }}
$$

iv) If $X_{n} \geqslant Y$ ass for all n, and $\mathbb{E}[Y]<\alpha$, then

$$
\mathbb{E}\left[\operatorname{limin}_{n \rightarrow \infty} x_{n}\right] \leqslant \operatorname{limin}_{n \rightarrow \infty}\left[\mathbb{E}\left[x_{n}\right]\right.
$$

(Fatuous' Lemma)

All tho above hold for discrete To (and series) as well - See chapter 4.1 .3 of Brémand DP (Also see Appendix A1 for proofs)

- Interchanging sums and integrals

$$
\begin{aligned}
& \text { If } X_{n} \geqslant 0 \text { then } \mathbb{E}\left[\sum_{n=1}^{\infty} x_{n}\right]=\sum_{n=1}^{\infty} \mathbb{E}\left[x_{n}\right] \\
& \text { If } X(t) \geqslant 0 \text { then } E\left[\int_{-2}^{c} x(t) d t\right]=\int_{-2}^{\infty} \mathbb{E}[(t)] d t \\
& \text { (Tonellis The) } \\
& \text { |f } \mathbb{E}\left[\sum_{n=1}^{\infty}\left|x_{n}\right|\right]<\alpha, \text { than } \mathbb{E}\left[\sum x_{n}\right]=\sum \mathbb{E}\left[x_{n}\right] \\
& \text { If } \left.\mathbb{E}\left[\int_{-\infty}^{\alpha=1} \mid X(t) d d t\right]<\alpha \text {, then } \mathbb{E}[X X(t) t]\right]=\int \mathbb{E}[(x)] d t \\
& \text { (Fubinis }{ }^{\prime} T_{m} \text {) }
\end{aligned}
$$

