
Multi-arm bandits Fall 2017

Dr. David A. Goldberg

Multi-arm bandits

December 8, 2017

1 Bayesian bandits and the Gittins index

1.1 Motivation

Many fundamental trade-o↵s that arise in a society can be framed as the question of whether to stick with an
option that is known to perform well, or explore a more risky option that may perform better. This is known
as the exploration-exploitation trade-o↵, i.e. selecting between exploring new options which may be better,
or continuing to exploit perhaps good enough options already known to perform well. To make it concerete
in Ph.D. student-land: suppose your advisor has you working on a research project, which is steadily yielding
decent results. A paper seems within reach. However, a very interesting new research problem came across
your advisor’s desk, which she has now passed on to you. Should you spend your time continuing on the
project you already know yields a steady stream of decent results, or devote valuable time to exploring the
new research question which may yield even more interesting results, but for which progress is much more
uncertain. Suppose you spend a day on the new problem and get nowhere. What should you do the next
day? How many days on the project is too many? If you switch back to the original safe project, will it
ever again make sense to give another go at the new and riskier problem? What if you are juggling many
such projects? What is the optimal strategy to use in conducting your own research? Similar scenarios arise
in many settings, including exploring the benefit of new drugs, the potential revenue of new products, the
potential reward of unexplored alternatives for an AI-driven robot, etc.

In this class we will see several di↵erent ways to formalize the above problem mathematically. The
solution methodologies and ideas we use for the di↵erent formulations will be related, but also have some
important di↵erences. We begin with the so-called Bayesian formulation for the multi-arm bandit (MAB)
problem. There are a fixed number, say N, of di↵erent alternatives. Time is discrete, and in every period
you must select one of the alternatives. For any alternative i, there is a reward distribution R

i, where we let
R

i denote a r.v. distributed as Ri. Suppose that every time you select alternative i, you get a reward drawn
independent and identically distributed (i.i.d.) from R

i. Of course, if one knew the reward distributions,
and was trying to maximize the expected reward earned over time, one would simply in each period always
select the alternative with the highest expected payout (breaking ties arbitrarily).

Let us think back on our Ph.D. research example, and make it a little more precise. For simplicity, we
will only concern ourselves with number of new (su�ciently interesting) results proven each day. Suppose
that for the project which is steadily yielding decent results, you have collected lots of data on your own
progress, and derived the following simple model for your progress on that problem. Any day on which you
work on the steady project, with probability (w.p.) 1

6 you prove 0 new results, w.p. 2
3 you prove 1 new

result, and w.p. 1
6 you prove 2 new results, and you are very confident in the validity of this model for

your progress on that problem. Alternatively, you do not yet have any data on how you perform on the
new research problem. Maybe it will turn out that you are very good at that type of problem, but then
again maybe you will not be good at that type of problem. Perhaps you have some experience working on
related problems. For example, suppose the new problem is very combinatorial in nature, in particular it is
about polyhedral combinatorics. Suppose you have worked on several di↵erent problems in combinatorics,
e.g. some problems in graph theory and other areas, but never any problems in polyhedral combinatorics.
Suppose you have data on your performance on past combinatorial problems, and reason as follows. In about
1
2 of the combinatorial research problems you have ever worked on, you were able to really internalize the
problem and make great progress steadily. In about 1

4 of the combinatorial research problems you have ever
worked on, you were able to really internalize the problem, but due to unforeseen fundamental di�culties in
the problem progress is not steady, instead most days you make no progress while every once in a while you
have a Eureka day and prove many results. Alternatively, in about 1

4 of the combinatorial research problems

1

you have ever worked on, the problem was essentially hopeless and you steadily made no progress at all.
More precisely, suppose your data on your own ability to solve problems revevaled the following. For any
given combinatorial problem (given no other useful data on your ability to solve the problem), w.p. 1

2 each
day you work on the problem you prove 1 result w.p. 1, independently across days (situation I); w.p. 1

4 each
day you work on the problem you prove 0 results w.p. 2

3 , and 5 results w.p. 1
3 (situation II); and w.p. 1

4 you
never prove any results on any of the days (situation III). Note that what we have here is a distribution on

distributions. In particular, you know (under our modeling assumptions) that each day you work on this
new problem the number of results you prove is drawn i.i.d. from some distribution which is innately fixed
at time 0 by some inherent notion of your innate compatability with the given problem. Namely, the actual
distribution of the number of results you prove each day you work on this new problem is fixed and not
changing over time. However, this fixed distribution is itself drawn randomly - and you don’t know which
distribution is fixed and governing your research progress.

1.2 Bayesian probability: an example

So what (operationally) does Bayesian mean here? Suppose you decide to “roll the dice”, and spend a day
on the new research problem. Suppose you prove zero results. The fact that you now have the additional
knowledge that you proved zero results will change your estimates for the di↵erent probabilities governing
which “type” of combinatorial problem this is (for you). Your initial beliefs here are generally referred to as
your prior, and your beliefs after a new observation(s) are generally called your posterior. Here, the prior
probabilities were (12 ,

1
4 ,

1
4). Using Bayes rule, we compute the posterior probabilities as

✓
P (I|0), P (II|0), P (III|0)

◆
=

✓
P (I, 0)

P (0)
,
P (II, 0)

P (0)
,
P (III, 0)

P (0)

◆

=

✓
0⇥ 1

2

0⇥ 1
2 + 2

3 ⇥
1
4 + 1⇥ 1

4

,

2
3 ⇥

1
4

5
12

,
1⇥ 1

4
5
12

◆

= (0,
2

5
,
3

5
).

What if we see another 0?
✓
P (I|0, 0), P (II|0, 0), P (III|0, 0)

◆
=

✓
P (I, 0, 0)

P (0, 0)
,
P (II, 0, 0)

P (0, 0)
,
P (III, 0, 0)

P (0, 0)

◆

=

✓
0⇥ 1

2

0⇥ 1
2 + (23)

2 ⇥
1
4 + 1⇥ 1

4

,
(23)

2
⇥

1
4

1
9 + 1

4

,
1⇥ 1

4
1
9 + 1

4

◆

= (0,
4

13
,
9

13
).

Alternatively, note that if we take as our prior (0, 2
5 ,

3
5), and observe a zero, our posterior is

✓
P (I|0), P (II|0), P (III|0)

◆
=

✓
P (I, 0)

P (0)
,
P (II, 0)

P (0)
,
P (III, 0)

P (0)

◆

=

✓
0⇥ 0

0⇥ 0 + 2
3 ⇥

2
5 + 1⇥ 3

5

,

2
3 ⇥

2
5

13
15

,
1⇥ 3

5
13
15

◆

= (0,
4

13
,
9

13
).

In particular, in a Bayesian setting, there are two conceptually di↵erent ways to compute your posterior
distribution when making multiple observations sequentially. One can compute the posterior “statically”
using the initial prior, or compute the posterior “dynamically” by continuing to update one’s prior as one
sees subsequent observations. These two conceptually di↵erent approaches will yield the same posterior
distribution, and in general we will in any given situation use the approach which is most convenient. We

2

also note that in many of the examples we consider, all that will matter are the observation counts / values,
as opposed to the order in which one has seen these given observations, and this will further simplify certain
calculations.

1.3 Bayesian probability: notation cheatsheet

As we shall be working with a fairly general notion of distribution (on distributions), let us set some additional
notations. In general we will be working with probability measures (typically denoted µ), which will allow
us a single notation for discrete and continuous distributions.

• {µ✓, ✓ 2 ⇥} : The collection of possible probability measures for the reward distribution

– ⇥ will be a general index set, and may be a finite set (e.g. {I, II, II}) or uncountably infinite
(e.g. the closed interval [0, 1]) or even more exotic

– For a subset S ✓ R, µ✓(S) is the probability assigned to the set S under the measure µ✓

– Given an unordered set of real numbers H, µ✓(H) is the probability that the first |H| rewards, as
an unordered set, equals H

– Given a collection H of unordered sets of real numbers, all of the same cardinality, µ✓(H) is the
probability that the first |H| rewards, as an unordered set, belongs to H.

– On our previous example:

⇤ ⇥ = {1, 2, 3}

⇤ µ1(1) = 1;µ2(0) =
2
3 , µ2(5) =

1
3 ;µ3(0) = 1

• µ̂: The prior distribution on the set of possible distributions {µ✓, ✓ 2 ⇥}

– The initial measure on measures

– For simplicity, we take µ̂ to be a measure on ⇥, which (as each ✓ is associated with a particular
distribution) induces a distribution on the set of all distributions.

– For T ✓ ⇥, µ̂(T) is the probability the ✓ of the true distribution belongs to that subset of ⇥. We
will sometimes be informal and simply say that µ̂(T) is the probability that the true distribution
belongs to T (i.e. not make reference to the index of that distribution).

– On our previous example:

⇤ µ̂(1) = 1
2 , µ̂(2) = µ̂(3) = 1

4

• H: A history of observations

– Will generally be taken as an unordered set of observed rewards

– On our previous example:

⇤ H = {0, 0}

• µ̂H: The posterior distribution on ⇥ given the observation history H

– For T ✓ ⇥,

µ̂H(T)
�
=

Z

✓2T

µ✓(H)dµ̂(✓)R
✓02⇥ µ✓0(H)dµ̂(✓0)

– Also generalizes naturally to a set H of histories, all of the same cardinality:

µ̂H(T)
�
=

Z

✓2T

µ✓(H)dµ̂(✓)R
✓02⇥ µ✓0(H)dµ̂(✓0)

– On our previous example:

3

⇤ µ̂{0,0}(1) = 0, µ̂{0,0}(2) =
4
13 , µ̂{0,0}(3) =

9
13

• µ: Measure on rewards under the prior (on distributions)

– For S ✓ R,

µ(S)
�
=

Z

✓2⇥
µ✓(S)dµ̂(✓)

– On our previous example:

⇤ µ(0) =
P3

i=1 µi(0)µ̂(i) = 0⇥ 1
2 + 2

3 ⇥
1
4 + 1⇥ 1

4 = 5
12

⇤ µ(1) =
P3

i=1 µi(1)µ̂(i) = 1⇥ 1
2 + 0⇥ 1

4 + 0⇥ 1
4 = 1

2

⇤ µ(5) =
P3

i=1 µi(5)µ̂(i) = 0⇥ 1
2 + 1

3 ⇥
1
4 + 0⇥ 1

4 = 1
12

• µ
H
: Measure on rewards under the posterior (given the history H)

– For S ✓ R,

µ
H
(S)

�
=

Z

✓2⇥
µ✓(S)dµ̂H(✓)

– Also generalizes naturally to a set H of histories, all of the same cardinality:

µ
H
(S)

�
=

Z

✓2⇥
µ✓(S)dµ̂H(✓)

– On our previous example:

⇤ µ
{0,0}(0) =

P3
i=1 µi(0)µ̂{0,0}(i) = 0⇥ 0 + 2

3 ⇥
4
13 + 1⇥ 9

13 = 35
39

⇤ µ
{0,0}(1) =

P3
i=1 µi(1)µ̂{0,0}(i) = 1⇥ 0 + 0⇥ 4

13 + 0⇥ 9
13 = 0

⇤ µ
{0,0}(5) =

P3
i=1 µi(5)µ̂{0,0}(i) = 0⇥ 0 + 1

3 ⇥
4
13 + 0⇥ 9

13 = 4
39

• ✓̂: the r.v. representing the random ✓ governing the true distribution

• E[R|✓̂]: Conditional expected per-period reward given the index of the true distribution equals ✓

–

E[R|✓̂]
�
=

Z
1

�1

xdµ
✓̂
(x)

– Sometimes, if it clarifies a concept, we will write E[R|✓̂ = ✓] (i.e. the less formal use of conditional
expectation)

– On our previous example:

⇤ E[R|✓̂ = 1] =
R
1

�1
xdµ1(x) = 1⇥ 1 = 1

⇤ E[R|✓̂ = 2] =
R
1

�1
xdµ2(x) = 0⇥ 2

3 + 5⇥ 1
3 = 5

3

⇤ E[R|✓̂ = 3] =
R
1

�1
xdµ3(x) = 0⇥ 1 = 0

• E[R|H]: Conditional expected per-period reward given the observed history equals H

– E[R|H]
�
=

R
1

�1
xdµ

H
(x)

– Also generalizes naturally to a set H of histories, all of the same cardinality:

E[R|H]
�
=

Z
1

�1

xdµ
H
(x)

– On our previous example:

4

⇤ E[R|H = {0, 0}] =
R
1

�1
xdµ

{0,0}(x) = 0⇥ 35
39 + 1⇥ 0 + 5⇥ 4

39 = 20
39

• E[R]: Unconditional expected per-period reward

– E[R]
�
=

R
1

�1
xdµ(x) =

R
✓2⇥ E[R|✓̂ = ✓]dµ̂(✓)

– On our previous example:

⇤ E[R] =
R
1

�1
xdµ(x) = 0⇥ 5

12 + 1⇥ 1
2 + 5⇥ 1

12 = 11
12

1.4 Another Bayesian example: Beta-Bernoulli model

We now further illustrate the above ideas through a canonical Bayesian setting called the Beta-Bernoulli
model, in which your prior is uniform over all Bernoulli distributions.

• {µ✓, ✓ 2 ⇥} :

– ⇥ = [0, 1]

– µ✓(1) = ✓, µ✓(0) = 1� ✓. Namely µ✓ is a Bernoulli(✓) distribution, abbreviated Be(✓)

• µ̂:

– For every closed interval [a, b] ✓ [0, 1], µ̂([a, b]) = b� a, i.e. Lebesgue measure

• H: A history of observations

– An unordered set of 0’s and 1’s

– nH(1): number of 1’s in the history; nH(0): number of 0’s in the history

• µ̂H: The posterior distribution on ⇥ given the observation history H

– For T ✓ [0, 1],

µ̂H(T) =

Z

✓2T

�
nH(1)+nH(0)

nH(1)

�
✓
nH(1)(1� ✓)nH(0)

d✓

R 1
0

�
nH(1)+nH(0)

nH(1)

�
✓0nH(1)(1� ✓0)nH(0)d✓0

=

Z

✓2T

✓
nH(1)(1� ✓)nH(0)

d✓
R 1
0 ✓0nH(1)(1� ✓0)nH(0)d✓0

=
(nH(1) + nH(0) + 1)!

nH(1)!⇥ nH(0)!

Z

✓2T

✓
nH(1)(1� ✓)nH(0)

d✓.

• µ:

– µ(1) =
R 1
0 µ✓(1)dµ̂(✓) =

R 1
0 ✓d✓ = 1

2

– µ(0) = 1
2

• µ
H
:

5

–

µ
H
(1) =

Z 1

0

�
nH(1)+nH(0)

nH(1)

�
✓
nH(1)(1� ✓)nH(0)

✓d✓

R 1
0

�
nH(1)+nH(0)

nH(1)

�
✓0nH(1)(1� ✓0)nH(0)d✓0

=

Z 1

0

✓
nH(1)+1(1� ✓)nH(0)

d✓
R 1
0 ✓0nH(1)(1� ✓0)nH(0)d✓0

=

(nH(1)+1)!nH(0)!
(nH(1)+nH(0)+2)!

nH(1)!nH(0)!
(nH(1)+nH(0)+1)!

=
nH(1) + 1

nH(1) + nH(0) + 2

=
nH(1) + 1

(nH(1) + 1) + (nH(0) + 1)

– µ
H
(0) = nH(0)+1

(nH(1)+1)+(nH(0)+1)

• E[R|✓̂ = ✓]:

– E[R|✓̂ = ✓] = ✓

• E[R|H]:

– E[R|H] =
R
1

�1
xdµ

H
(x) = 0⇥ dµ

H
(0) + 1⇥ dµ

H
(1) = nH(1)+1

(nH(1)+1)+(nH(0)+1)

• E[R]:

– E[R] = 0⇥ µ(0) + 1⇥ µ(1) = 1
2

1.5 Sequences of histories and the history Markov chain

Let {Ht, t � 1} denote the random nested sequence of unordered sets of realized rewards observed over time.
Thus H1 is the reward you see after your first observation, H2 is the unordered set consisting of the first
two rewards, etc. Then Ht ✓ Ht+1 for all t � 1. Note that Ht+1 \ Ht is the unique observation one must
see in period t + 1 so that, starting with history Ht in period t, one has history Ht+1 in period t + 1. For
histories Ht ✓ Ht+1, let µ(Ht+1|Ht) denote the probability that, starting with history Ht in period t, one
has history Ht+1 in period t + 1. Then in our previous notation, supposing that for any given t the set of
possible histories is countable (if not one would operate with corresponding sets of histories),

µ(Ht+1|Ht) = µ
Ht

�
Ht+1 \ Ht

�
.

Similarly, let µ(Ht+1|{Hi, i = 1, . . . , t}) denote the probability that, having observed histories H1, . . . ,Ht

in periods 1, . . . , t, one has history Ht+1 in period t + 1. Note that specifying the sequence of histories is
equivalent to specifying the unordered set Ht with the elements ordered by the time at which they were
observed. However, as specifying the history as an ordered and unordered set yield the same posterior
distribution µ

Ht
, it follows from a straightforward argument that µ(Ht+1|{Hi, i = 1, . . . , t}) = µ(Ht+1|Ht).

Combining the above, we find that {Ht, t � 1} is a Markov chain with Markov kernel µ(Ht+1|Ht). We will
in general take the initial state H0 to be a default empty history ;, and note that for the case of uncountable
histories one also gets a Markov chain, albeit on an uncountably infinite state-space.

6

1.6 Bayesian formulation of the MAB problem

We now make completely formal an initial rigorous formulation for the Bayesian MAB problem. This
formulation is standard/classical, although later in the class we wil see other variants with additional features.
We suppose there are N alternatives (i.e. arms, we note that a MAB is British slang for a slot machine),
and time is discrete. For each arm i, there is a prior distribution µ̂

i on reward distributions, and the reward
distribution of each arm is drawn independently from its prior. Namely, letting ✓̂

i denote the true ✓ realized
for arm i (governing its reward distribution), {✓̂i, i = 1, . . . , N} are independent. For arm i, there is a set
{µ

i

✓
, ✓ 2 ⇥i

} of possible measures
Our goal will be to maximize the net expected reward that we earn over the entire time horizon. As

a mathematical convenience, we consider an infinite-horizon discounted model, standard in the Markov
decision process (MDP) literature. If Rt is the reward we earn in period t, then we wish to maximize
E[

P
1

t=1 �
t
Rt] =

P
1

t=1 �
t
E[Rt], where � is the discount factor 2 (0, 1), and Rt is the random reward we earn

in period t. Of course, the term Rt is hiding a lot, including randomness associated with the distribution
associated with each arm (for which you have a prior), randomness associated with the rewards you see on
the given arm, and the actions of your policy for switching between the arms. Let {R

i

k
, k � 1} denote the

sequence of rewards one would realize on arm i if arm i was played consecutively, an infinite number of
times. Note that {R

i

k
, k � 1} is NOT i.i.d., but is conditionally i.i.d., conditional on ✓̂

i. Indeed, based on
our discussion of the history Markov chain, it is easy to see that the conditional distribution of Ri

k
, given

{R
i

j
, j = 1, . . . , k � 1}, is the same as µ

{R
i
j ,j=1,...,k�1}. As a shorthand, we will let Ri denote R

i

1.

Before further formalizing all of these things, let’s warm up a bit. First, suppose that before the first pull,
you had to select an arm and play that arm forever. With no ability to learn anything, it will be optimal
to simply select the arm with the highest expected reward. Of course, this means the highest expected
reward with regards to (w.r.t.) two sources of randomness: the randomness in which distribution that arm
has, and the randomness in the reward associated with that given distribution. In this case, the optimal
policy (subject to these “no-learning” constraints) would simply select the arm i maximizing E[Ri], and in
expectation (over the entire horizon) earn �

1��
maxi2[1,N] E[Ri].

As a second warmup, suppose that before your first pull, an omniscient being reveals to you the true
distribution associated with each arm (the problem as stated only endows you with a prior over distributions
for each arm). In this case, what is the expected reward earned by an optimal policy (given this impossible
side information)? Clearly the optimal policy is to select the arm whose realized distribution has the highest
expectation. Then the optimal policy can earn

�

1� �
E[max

i2[1,N]
E[Ri

|✓̂i]].

Namely, here we can obtain the expected value (over the priors) of the max of the expectations (of the realized
distributions), which will always be larger than the maximum of the associated expectations (acheived under
the previous assumption, by Jensen’s inequality).

To make this even more concrete, suppose that each arm has the Beta-Bernoulli prior defined earlier.
Then if we had to select an arm with no information at all, all arms are equally good, and an optimal policy
would simply select any of the arms, and earn �

1��
⇥

1
2 . If we see the true distributions before selecting an

arm, which here would mean seeing the true success probability of each arm, we would select the maximum,
and (as the expected value of a Bernoulli is simply its probability of equalling 1) earn in expectation the
expected value of the maximum of N independent uniforms, equal to (by the tail-integral formula for expected

7

value, letting {Ui, i 2 [1, N]} be i.i.d. U[0,1])

�

1� �
E[max

i2[1,N]
Ui] =

�

1� �

Z
1

0
P
�

max
i2[1,N]

Ui > x
�
dx

=
�

1� �

Z 1

0

✓
1� P

�
max

i2[1,N]
Ui  x

�◆
dx

=
�

1� �

Z 1

0

✓
1�

NY

i=1

P
�
Ui  x

�◆
dx

=
�

1� �

Z 1

0

✓
1� x

N

◆
dx =

�

1� �

�
1�

1

N + 1

�
.

Note that for N � 2, �

1��

�
1� 1

N+1

�
>

�

1��
⇥

1
2 .

We have thus analyzed the “two extremes” - one in which you must base all decisions on no information
(beyond the prior), and one in which you can base all decisions on perfect information. In the actual problem,
one bases one’s decisions on a policy which gains information over time, albeit in general never having perfect
information about the true distribution on any of the arms. In general, a policy uses past rewards, combined
with the initial prior, to inform future decisions. More formally, a policy must be adapted (in the sense of
filtration) to the �-field generated by the past observed rewards. Of course, which arm’s rewards you have
observed will itself depend on the policy choices, so this is a bit subtle. We will define a history vector, Hi

t
,

for each arm i. Namely, Hi

t
is the unordered set (possibly empty) consisting of the set of realized rewards

observed on arm i in periods 1, . . . , t. Note that in general the histories of di↵erent arms will have di↵erent
cardinalities, as your policy may have pulled certain arms more times than other arms.

In that case, a policy is a mapping which, in period t, takes as input any possible vector of histories
up to time t � 1,

�
H

i

t�1, i = 1, . . . , N
�
, and outputs a distribution (possibly degenerate) on the index set

[1, N] (corresponding to your next move being to select an arm according to that distribution). Here we take
H

i

0 = ;. For a given policy ⇡, let t⇡,i(0) = 0; N⇡,i(t) denote the (random) number of times that ⇡ pulls arm
i during periods 1, . . . , t; N⇡,i(1) denote the total number of such pulls over the entire time horizon (may be
finite or infinite); and t

⇡,i(k) denote the (random) time that ⇡ pulls arm i for the kth time, k = 1, . . . , N⇡,i.
Note that although for any given policy ⇡, it will in general NOT be the case that {Hi

t
, t � 0} is a Markov

chain (since the times at which arm i is pulled may depend in a complex way on the realized rewards on all
arms), it WILL be the case that {H

i

t⇡,i(k), k = 0, . . . , N⇡,i
} evolves as a Markov chain, independent of the

particular policy ⇡ or any information about the realized rewards of the other arms. Note that if the policy
⇡ pulls arm i at time t, this will correspond to the N⇡,i(t) time that the policy has pulled arm i, equivalently
(if arm i is pulled at time t) the N⇡,i(t�1)+1 time that the policy has pulled arm i. Hence (by construction
and our definitions), if policy ⇡ pulls arm i at time t, it earns (random) reward R

i

N⇡,i(t�1)+1. We also note

that N⇡,i(t) = |H
i

t
|.

We note that really the policy can in principle depend on the sequence of histories, i.e.

✓�
H

i

k
, k =

1, . . . , t� 1
�
, i = 1, . . . , N

◆
, but the fact that each history evolves as a Markov chain (as already discussed)

implies by standard arguments from the theory of Markov decision processes (MDP) that one may w.l.o.g.
(without loss of generality) restrict to the family of so-called Markov policies whose decision in period t

depends only on
�
H

i

t�1, i = 1, . . . , N
�
. We let Ht�1 denote the (ordered) vector of unordered sets

�
H

i

t�1, i =
1, . . . , N

�
. We note that the policy also knows the initial prior, but this will generally be implicit (i.e.

notationally supressed). It also follows from the general theory of MDP that there exists an optimal policy
which is deterministic (i.e. maps every possible

�
H

i

t�1, i = 1, . . . , N
�
to a deterministic single index), and

stationary (i.e. makes the same action whenever faced with the same set of histories, although here this is
not really meaningful as no collection of histories can be visited twice as the total number of observations
grows with time). We let ⇧ denote the family of policies satisfying these requirements.

For a given policy ⇡ 2 ⇧ and t � 1, we let ⇡(Ht�1) denote the index of the arm the policy selects

8

in period t, conditional on the state at the start of period t being Ht�1. We will also let ⇡(t) denote the
random index of the arm the policy selects in period t, where under that notation the dependence on Ht�1 is
implicit, but it is of course true that w.p.1 ⇡(t) = ⇡(Ht�1). We will broadly use the notation I(·) to denote
the indicator function, evaluating to 1 if the expression inside is true, and 0 otherwise.

Now, we can formally state our problem as:

max
⇡2⇧

E[
1X

t=1

�
t
R

⇡(t)

|H
⇡(t)
t�1 |+1

].

It turns out that the right way to think about the expectation is to condition on Ht�1, as follows.

max
⇡2⇧

E[
1X

t=1

�
t
R

⇡(t)

|H
⇡(t)
t�1 |+1

] = max
⇡2⇧

1X

t=1

�
t
E[R⇡(t)

|H
⇡(t)
t�1 |+1

]

= max
⇡2⇧

1X

t=1

�
t
E


E[R⇡(t)

|H
⇡(t)
t�1 |+1

|Ht�1]

�

= max
⇡2⇧

1X

t=1

�
t
E


E[

NX

i=1

R
i

|H
i
t�1|+1I

�
⇡(Ht�1) = i

�
|Ht�1]

�

= max
⇡2⇧

1X

t=1

�
t
E

 NX

i=1

E
⇥
R

i

|H
i
t�1|+1I

�
⇡(Ht�1) = i

�
|Ht�1

⇤�

= max
⇡2⇧

1X

t=1

�
t
E

 NX

i=1

I
�
⇡(Ht�1) = i

�
E[Ri

|H
i
t�1|+1|Ht�1]

�
by meas. and the pull-out property

= max
⇡2⇧

1X

t=1

�
t
E

 NX

i=1

I
�
⇡(Ht�1) = i

�
E[Ri

|H
i
t�1|+1|H

i

t�1]

�
by independence of the arms.

We will have more to say on this point later, but for now note that E[Ri

|H
i
t�1|+1|H

i

t�1] does not in any way

depend on the choices made by the policy, or anything else, except in-so-far as those things impact H
i

t�1.
Furthermore, E[Ri

|H
i
t�1|+1|H

i

t�1] does not even really depend on t, again except in-so-far as t impacts the

unordered set Hi

t�1. Namely, if under two di↵erent policies, and for two di↵erent times, it turns out that the
unordered set comprising the history on arm i is the same, then these conditional expectations will w.p.1
equal one-another. Another way to understand this is that, by the measurability aspect in the definition of
conditional expectation, it holds that E[Ri

|H
i
t�1|+1|H

i

t�1] is a deterministic function of Hi

t�1, the history (as

an unordered set) on arm i up to time t.
We also make another peculiar observation. If we considered the same exact MAB problem, except that

instead of seeing a random reward every time you pulled arm i, you instead received E[Ri

|H
i
t�1|+1|H

i

t�1]

whenever you pull arm i and the history on arm i at that time is exactly H
i

t�1, we are faced with exactly
the same optimization, which will have exactly the same optimal policies. Namely, we can w.l.o.g. assume
that if we ever play arm i while its history is the unordered set H, we receive a deterministic (as a function
of H) payout E[Ri

|H
i
t�1|+1|H

i

t�1].

Lastly, we note that the dynamic evolution of the state is implicit in the above formulation. In particular,
at the start of time t, the state of the system is Ht�1 =

�
H

i

t�1, i = 1, . . . , N
�
. Under policy ⇡, in period

t you select arm ⇡(Ht�1), receive reward
P

N

i=1 I
�
⇡(Ht�1) = i

�
E[Ri

|H
i
t�1|+1|H

i

t�1], and then the history of

arm ⇡(Ht�1) updates according to its Markovian dynamic by one step, while all other arm’s histories remain
unchanged. This updated set of histories constitutese Ht.

9

1.7 Connection to the Markov Chain Selection Problem

When written formally as above, we make an important observation connecting the Bayesian MAB problem
to a more general stochastic control problem. In particular, this Bayesian MAB problem is actually a special
case of the following problem, which we will call the Markov Chain Selection Problem. In the Markov Chain
Selection Problem (MCSP), one has N independent Markov chains, {M i

, i = 1, . . . , N}. Associated to each
state s in the (here we assume countable, but this is not essential) state-space of M i is a deterministic reward
R

i(s). Markov chain M
i is initialized in a particular state M

i

0. For this problem a policy ⇡ is a mapping
which, in period t, takes as input any possible vector comprising the current states of all N Markov chains
at (the end of) time t � 1 (equivalently at the start of time t), Mt�1 =

�
M

i

t�1, i = 1, . . . , N
�
, and outputs

a deterministic index ⇡(Mt�1) = ⇡(t) in [1, N]. We also require the policy be stationary, and let ⇧ denote
the family of all such policies. In period t you earn the (time-discounted) reward of the state of the arm you

pulled, i.e. �t
P

N

i=1 I
�
⇡(Mt�1) = i

�
R

i(M i

t�1). The dynamics are then as follows: the Markov chain selected
in period t, ⇡(Mt�1), advances by one step (according to its Markovian dynamics), while all other Markov
chains remain in their past states. This updated set of states constitutese Mt.

In that case, our objective for this Markov Chain Selection Problem is

max
⇡2⇧

1X

t=1

�
t
E

 NX

i=1

I(⇡(t) = i)Ri(M i

t�1)

�
.

That the Bayesian MAB problem is a special case follows from our observations regarding the history
Markov chain, our observation that one can replace the random rewards with the appropriate conditional
expectations, and the analogous dynamics (i.e. only the selected alternative updates).

Let us illustrate with a concrete example of this reduction, and begin to think on the optimal policy and
the trade-o↵s involved. Suppose there are two arms, with ⇥1 = {1, 2, 3, 4}; µ̂1(✓) = 1

4 for ✓ = 1, 2, 3, 4; and
µ
1
✓
(✓) = 1 for ✓ = 1, 2, 3, 4. Namely, the reward distribution on arm 1 is either always 1, always 2, always 3,

or always 4, with all possibilities equally likely. Note that in this simple example, after pulling arm one one
time, Baye’s rule will indeed ensure that you know the true distribution on that arm (which is a very special
and simple case). Suppose ⇥2 = 3, µ̂2(3) = 1; and µ

2
3(3) = 1. Namely, the reward distribution on arm 2 is

always 3. Note that the prior on the second arm is degenerate, and you thus know the true distribution on the
second arm before any pulls at all. A two-arm MAB problem in which you apriori know the true distribution
for one of the arms is sometimes referred to as the 1-and- 12 -arm bandit problem. What would the reduction
to the MCSP look like? For arm 1, we initialize in a state ;, with R

1(;) = 1+2+3+4
4 = 2.5. From state ; there

are 4 states to transition to, states 1, 2, 3, 4. P 1
;,i

= 1
4 , and R

1(i) = i, for all i = 1, 2, 3, 4. Furthermore, letting

i
k denote the unordered set consisting of exactly k i’s (for k � 1), P 1

ik,ik+1 = 1, R1(ik) = i, i = 1, 2, 3, 4. It
is easy to see that this chain will have the same associated dynamics and rewards as the following simpler
5-state chain. There is an initial state ; with R

1(;) = 2.5. There are 4 additional states 1, 2, 3, 4, with
P

1
;,i

= 1
4 , R

1(i) = i, and P
1
i,i

= 1 for i = 1, 2, 3, 4.

For arm 2, we initialize in a state ;, with R
2(;) = 3. Furthermore, P 2

;,3 = 1, P 2
3k,3k+1 = 1, and R

2(3k) = 3
for all k � 1. It is again easy to see that the dynamics of this chain are equivalent to the single-state chain
with only a state 3, s.t. P 2

3,3 = 1, R2(3) = 3.
What is the optimal policy here? Let us begin with a few observations. Working with the reduced chains,

note that if an optimal policy ever selects a state that loops to itself w.p.1, then by stationarity, it must be
optimal to continue to advance that state forever, as no states of any of the Markov chains will have changed.
In particular, in the MAB language, if one ever pulls an arm whose distribution is known with certainty, then
it must be optimal to continue to play that arm forever (at least in the infinite-horizon discounted setting).
Thus, considering the reduced chains, there are only a few policies we need to consider. Namely, our policy
is completely determined if we decide: 1. which arm to play first, and 2. if we play the first arm and see
an i do we continue to play the first arm forever or switch to the second arm. A straightforward argument
further shows that, having played the first arm, it is optimal to continue to play the first arm forever if the
reward is at least 3, and otherwise to switch to the second arm and play it forever. Thus there are only two
policies to compare. If we play the second arm at time 1, we earn 3 �

1��
. If we play the first arm first, we

10

earn

2.5� +
4X

i=1

�
2

1� �

1

4
max(i, 3) = 2.5� +

�
2

4(1� �)
(3 + 3 + 3 + 4)

= 2.5� +
13

4

�
2

1� �

=
�

4

�
10 + 13

�

1� �

�
.

So when do we play the second arm at time 1? This is optimal when

3
�

1� �
�

�

4

�
10 + 13

�

1� �

�
$

12

1� �
� 10 + 13

�

1� �

$ 12 � 10(1� �) + 13�

$ � 
2

3
.

Here we see the fundamental trade-o↵ of the MAB problem. If the discount factor is close-enough to 1,
a significant premium is put on ultimately learning which arm is truly better, and the penalty of settling
for a sub-optimal arm is very high. Alternatively, if the discount factor is closer to 0, the future is heavily
discounted and the value of learning is not that great. Note that if one was myopically selecting the arm
with the highest short-term (single-period) expected payout, one would select the second arm at time 1,
as 3 � 2.5. Thus here we find that such a myopic policy is optimal if the future is heavily discounted,
and otherwise it is optimal to spend the first period learning on the o↵-chance that the first arm is strictly
better (if its reward is 4). This is a concrete manifestation of the so-called exploration vs. exploitation
trade-o↵. For general reward distributions, the trade-o↵ manifests and interacts with the discount factor
in more complicated ways, but ultimately one is always one-way-or-another trading o↵ the exploitation of
arms for which one is very confident that the payout is high with arms for which one has less information
and which may perform even better.

This connection between MAB and MCSP had already been identified by the 1950’s. However, as the
dimension of the MDP scales linearly with the number of arms, the state-space of the corresponding DP
grows exponentially with the number of arms / chains. Thus for many years, it was believed that for even
a relatively small number of arms, this problem was intractable.

1.8 Gittin’s Index Theorem

1.8.1 Motivation

In the 1970’s, John Gittins had a breakthrough which proved otherwise. Gittins proved that the optimal
policy actually had a relatively simple form, which was far more tractable than previously believed. In
particular, he proved that it is possible, at time 0, to assign a strictly positive real number, i.e. index, to
each state of each arm, with the following property. In each period, of all those states available on the
di↵erent arms, one simply plays the state which appears highest on this list. This is called an index (i.e.
priority) policy, and a problem for which such a policy is optimal is said to be indexable. Apriori, it could
have been the case that the inherent “desirability” of a given state depended in a very complex manner on
the states of the other arms. For example, consider the setting in which N = 2, and both arms have the
same Markov chain. In this special case, indexability is equivalent to the following condition: if in state
(i, j) you select state i, and in state (j, k) you select state j, then in state (i, k) you must similarly select
state i (modulo ties). Apriori, as the order in which you play the di↵erent states creates inherent trade-o↵s
as states played later are more heavily discounted, and as the Markov chain dynamics are general, there is
no reason to believe that such a condition must hold. In fact, for many very closely related problems, it
does not. Note that for the setting in which every arm has the same Markov chain, the complexity of the

11

associated optimal policy scales almost independent of the number of arms (depending on the number of
arms only through a few lookups and comparisons which can be implemented using e�cient data structures
and sorting algorithms). This is a vast improvement over the exponential scaling (in the number of arms)
of the naive dynamic program.

1.8.2 Some simple reductions

We now prove Gittin’s theorem. We present a proof which uses an elegant and insightful polyhedral argument,
although at the sacrifice of assuming that all chains have a finite number of states (which, I note, is not the
case for e.g. the Beta-Bernoulli setup). However, there are many proofs of this theorem at many levels of
generality, and proofs are also known for the setting in which the chains have an infinite number of states.
In fact, there is a direct generalization of our polyhedral argument to this more general setting, although
it requires some additional details that we will not present here. Thus suppose each of the N chains has
a finite number of states. W.l.o.g., we suppose that each chain has the same state-space, rewards (for any
given state), and transition probabilities. This is w.l.o.g. since we can simply create a state of the form (s,i)
for state s on arm i, and have the associated Markov chains contain non-communicating clusters, in which
case being in the correct chain can be done through proper initialization.

1.8.3 A state-centric linear formulation

The proof begins by forcing us to think about the performance of a policy ⇡ in a very di↵erent way. We
are used to thinking about the policy in terms of which arm is pulled when. However, in some sense that
is not particularly useful, as the reward you get is governed not by the arm, but by the state of the arm.
Thus, we will shift to instead thinking about when your policy plays each di↵erent state (i.e. advances
a chain in that given state, receiving that state’s reward). Namely, let S denote the state-space of (any)
one of the Markov chains (as they all have the same state space). Note that S is NOT the state-space
for the entire system, which must keep track of all N arms, but just the state-space for any one of the
arms. For ⇡ 2 ⇧, let ⇡(t) denote the state of the chain which is activated at time t. In particular,

⇡(t) =
P

N

i=1 I(⇡(t) = i)M i

t�1. Note that the total reward earned over the entire time horizon due to
contributions from state s 2 S equals

P
1

t=1 �
t
I
�
⇡(t) = s

�
R(s), and the corresponding expectation equals

R(s)E
⇥P

1

t=1 �
t
I
�
⇡(t) = s

�⇤
. More precisely, as the corresponding expectation depends on the initial set

of states M0, and hence is (making this dependence explicit) equals R(s)E
⇥P

1

t=1 �
t
I
�
⇡(t) = s

�
|M0

⇤
. For

a given policy ⇡ and M0, let x⇡,M0
s

�
= E

⇥P
1

t=1 �
t
I
�
⇡(t) = s

�
|M0

⇤
, and x

⇡,M0 the corresponding vector (as
a column), where we assume there is some fixed ordering on the states. We also make the dependence on
the number of arms N explicit, using the notation x

⇡,N,M0 and x
⇡,N,M0 . Of course x

⇡,N,M0 also depends
implicitly on the particular Markov chain dynamics and discount factor �, but we leave those dependencies
implicit. Let R denote the corresponding vector (as a row) of rewards (both vectors being S-dimensional).
Then note that for the given policy ⇡ and initial condition M0, the expected total reward earned by ⇡ equals
R · x

⇡,N,M0 , where we remind the reader that R depends on neither ⇡, N, nor M0 (nor � for that matter).
Thus we can frame the value of an optimal policy as follows. Let �N,M0 denote the set of all vectors x s.t.
there existst ⇡ 2 ⇧ for which x = x

⇡,N,M0 . Equivalently, �N,M0 =
S

⇡2⇧ x
⇡,N,M0 . Then the value attained

by an optimal policy is the solution to the following optimization problem:

max
x2�N,M0

R · x.

In particular, we are maximizing a linear function over the set �
N,M0 . If �N,M0 was a polytope which we

could separate over, we would simply have a nice linear program! However, we have no reason to believe that
the set �N,M0 is in any way “nice”. Note that given that there are N Markov chains, each having |S| states,
and (as we are assuming all N chains are the same) we can bound the total number of states of the system
by |S|

N , in which we can bound the total number of policies (mappings from this set of states to indices) by

N
|S|

N

, which scales terribly in N and |S|. As each such policy generates a vector, and we are maximizing

12

a linear function, we know from basic linear programming (LP) that we can equivalently optimize over the
convex hull of these vectors. Let �

N,M0 denote the convex hull of �N,M0 , which will be a poltyope. Then
our problem is equivalently

max
x2�N,M0

R · x.

Of course, this polytope could have as many as N |S|
N

vertices, and it is completely unclear how to charac-
terize this polytope, not to mention e�ciently separate or optimize. We note that as essentially all general
algorithms for MDP also perform worse as the number of states of the systems grows, it is unclear how to
use any of those techniques here either.

1.8.4 A linear programming relaxation

What to do? Well, as with any linear program for which it is unclear how to characterize the underlying
polyope (e.g. many polyhedra arising in combinatorial optimization), we can attempt to write down a
relaxation. We begin by introducing some further notations. We will attempt to write down an inequality
for every subset S of states, so let us fix some such subset S.

• N
i

0: Total number of times arm i must be pulled until it enters a state in S for the first time. This
counts the pull which takes you to a state in S. N i

0 = 0 if M i

0 2 S. N i

0 = 1 if arm i, pulled an infinite
never of times, never enters a state in S.

• t
i

0(k), k = 1, . . . , N i

0: time at which arm i is pulled for the kth time. If N i

j
= 0, this is not defined for

any k.

• M
0

0 : unordered set of indices of those arms not initially in S, i.e. {i : M0
i
/2 S}.

• t
i

j
: Time at which a state in S is played on arm i for the jth time. ti

j
= 1 if this never occurs.

• N
i

j
: Total number of times arm i must be pulled, including the pull at time t

i

j
, if pulled consecutively

from that time onward, until it again enters a state in S. Thus (for example) if the pull at time t
i

j

results in arm i entering a state in S, it would hold that N i

j
= 1. N i

j
= 0 if ti

j
= 1. Note that N i

j
may

equal 1.

• t
i

j
(k), k = 1, . . . , N i

j
�1: time at which arm i is pulled for the kth time, strictly after time ti

j
. Note that,

conceptually (although we do not define for k = N
i

j
to prevent confusion), we would have ti

j

�
N

i

j

�
= t

i

j+1.
For example, if N i

j
= 1, then the first pull on arm i strictly after time t

i

j
will activate a state in S, and

hence t
i

j+1 = t
i

j
+ 1 = t

i

j
(N i

j
).

• �(ti
j
): identity of the state in S which is played at time t

i

j
, i.e. M

i

t
i
j�1. Note: the value is irrelevant if

t
i

j
= 1, in which case we set �(ti

j
) = ;.

Note that
P

N

i=1

P
1

j=1

�
�
t
i
j +

PN
i
j�1

k=1 �
t
i
j(k)

�
is the discounted time pulling states in S and getting back to

states in S. We now derive a lower bound for this quantity. By accounting for how we spend every time
period,

�

1� �
=

X

i2M
0

0

N
i
0X

k=1

�
t
i
0(k) +

NX

i=1

1X

j=1

�
�
t
i
j +

N
i
j�1X

k=1

�
t
i
j(k)

�
.

Thus
NX

i=1

1X

j=1

�
�
t
i
j +

N
i
j�1X

k=1

�
t
i
j(k)

�
=

�

1� �
�

X

i2M
0

0

N
i
0X

k=1

�
t
i
0(k).

13

Furthermore,

X

i2M
0

0

N
i
0X

k=1

�
t
i
0(k) 

P
i2M0

0
N

i
0X

k=1

�
k
,

with equality if (at least initially) we prioritize those arms not in S, trying to get them to S. Thus defining

TM0

�
=

X

i2M
0

0

N
i

0,

it follows that
NX

i=1

1X

j=1

�
�
t
i
j +

N
i
j�1X

k=1

�
t
i
j(k)

�
�

�

1� �
�

TM0X

k=1

�
k
. (1)

We now derive an upper bound for the left-hand-side of (1), which will thus have to be larger than the
right-hand-side of (1). Since t

i

j
(k) � t

i

j
+ k, we conclude that

NX

i=1

1X

j=1

�
�
t
i
j +

N
i
j�1X

k=1

�
t
i
j+k

�
�

�

1� �
�

TM0X

k=1

�
k
, (2)

and thus
NX

i=1

1X

j=1

�
t
i
j

N
i
j�1X

k=0

�
k
�

�

1� �
�

TM0X

k=1

�
k
,

from which it follows that

E

 NX

i=1

1X

j=1

�
t
i
j

N
i
j�1X

k=0

�
k

�
�

�

1� �
� E

⇥ TM0X

k=1

�
k
⇤
. (3)

Next, it will be useful to further partition the left-hand-side by which state we are in. In particular,

NX

i=1

1X

j=1

�
t
i
j

N
i
j�1X

k=0

�
k =

NX

i=1

1X

j=1

X

s2S

I
�
�(ti

j
) = s

�
�
t
i
j

N
i
j�1X

k=0

�
k
,

and thus

E

 NX

i=1

1X

j=1

�
t
i
j

N
i
j�1X

k=0

�
k

�
= E

 NX

i=1

1X

j=1

X

s2S

I
�
�(ti

j
) = s

�
�
t
i
j

N
i
j�1X

k=0

�
k

�
,

itself equal to
NX

i=1

1X

j=1

X

s2S

E


I
�
�(ti

j
) = s

�
�
t
i
j

N
i
j�1X

k=0

�
k

�
.

Let TS

s
denote the number of transitions it takes, if the chain starts in state s, to first hit a state in S (or to

again hit a state in S if s 2 S). By the Markov property,

E


I
�
�(ti

j
) = s

�
�
t
i
j

N
i
j�1X

k=0

�
k

�
= E

⇥ T
S
s �1X

k=0

�
k]E

⇥
I
�
�(ti

j
) = s

�
�
t
i
j
⇤
.

Combining with the above, we conclude that

NX

i=1

1X

j=1

X

s2S

E


I
�
�(ti

j
) = s

�
�
t
i
j

N
i
j�1X

k=0

�
k

�

14

equals
NX

i=1

1X

j=1

X

s2S

E
⇥ T

S
s �1X

k=0

�
k]E


I
�
�(ti

j
) = s

�
�
t
i
j

�
.

Interchanging the order of summation, this further equals

X

s2S

E
⇥ T

S
s �1X

k=0

�
k]

NX

i=1

1X

j=1

E


I
�
�(ti

j
) = s

�
�
t
i
j

�
,

itself equal to

X

s2S

E
⇥ T

S
s �1X

k=0

�
k]E

 NX

i=1

1X

j=1

I
�
�(ti

j
) = s

�
�
t
i
j

�
.

Noting that

E

 NX

i=1

1X

j=1

I
�
�(ti

j
) = s

�
�
t
i
j

�
= x

⇡,M0
s

,

we conclude that
X

s2S

E
⇥ T

S
s �1X

k=0

�
k]x⇡,M0

s
�

�

1� �
� E

⇥ TM0X

k=1

�
k
⇤
,

and after simplifying, and making the implicit dependence of TM0 on S explicit with a superscript,

X

s2S

E
⇥ T

S
s �1X

k=0

�
k]x⇡,M0

s
�

�

1� �
E[�T

S
M0].

Letting A
S

i

�
= E

⇥PT
S
i �1

k=0 �
k], and bM0(S)

�
= �

1��
E[�T

S
M0], we have that for every S ✓ S,

X

i2S

A
S

i
x
⇡,M0
i

� bM0(S).

Furthermore, again by a simple time accounting argument,

X

i2S

x
⇡,M0
i

=
�

1� �
.

Adding non-negativity of x
⇡,M0
i

, this gives an LP relaxation of our original problem. Note that it is a
relaxation over acheivable vectors (w.r.t. discounted time in the di↵erent states), as opposed to an LP
directly giving decision variables. Also (and this is very important), the coe�cients in no way depend on ⇡.
Thus this must hold for ANY ⇡. Furthermore, we have that the inequality for set S is tight if our policy
always prioritizes sets in S \ S over sets in S. Recall, our final LP relaxation is:

max
x2R|S|

X

i2S

R(i)xi,

s.t. X

i2S

A
S

i
xi � bM0(S) for all S ✓ S, S 6= ;;

X

i2S

x
⇡,M0
i

=
�

1� �
.

15

xi � 0 for all i 2 S.

Further noting that bM0(S) =
�

1��
E[�0] = �

1��
; and that AS

i
= 1 for all i, we may rewrite as follows:

max
x2R|S|

X

i2S

R(i)xi,

s.t. X

i2S

A
S

i
xi � bM0(S) for all S 2 2S , S 6= S, ;;

X

i2S

A
S

i
xi = bM0(S);

xi � 0 for all i 2 S.

Now, we make an important observation and interpretation regarding the primal. Note that for any given
subset S, to derive the corresponding inequality, we only made two approximations. First, we used the
inequality

X

i2M
0

0

N
i
0X

k=1

�
t
i
0(k) 

P
i2M0

0
N

i
0X

k=1

�
k
.

Second, we used the inequality that for all i, j, k, it holds w.p.1 that ti
j
(k) � t

i

j
+ k. We now claim that for

any policy ⇡ which, when faced with some states which belong to S and some which do not will always (in
a possibly very complicated and sophisticated way) pick some state in S

c, both of these inequalities become
equalities. Indeed, we already noted that the first inequality becomes an equality if we always prioritize
states not in S over states in S, as in that case, until all arms not initially in S hit S for the first time, we
simply pull those arms (in a possibly very complicated way, but never pulling an arm that has already been
to S at least once). To see that under any such S

c-favoring policy, it will hold (w.p.1) that for all i, j, k,
t
i

j
(k) = t

i

j
+ k, note that such a policy operates in two stages. First, it plays all arms not initially in S

until they are all in S (again, possibly choosing among those arms in a complicated way over time until this
occurs). At that time all arms are in S (unless the first stage lasts forever, which is also possible). From that
time onward (supposing the first stage is finite), it will (again in a possibly complicated way) select some
arm in S, and play that arm. If that arm stays in S, it will again look at all the arms, and play some arm in
S. If any of the arms ever leaves S, it will by a simple contradiction be the only arm not in S, and hence must
be prioritized and pulled until it gets back to S. That is by definition equivalent to enforcing t

i

j
(k) = t

i

j
+ k

for all i, j, k.
Thus we find that the inequality for set S is tight for any S

c-favoring policy. Equivalently, the inequality
for set Sc is tight for any S-favoring policy. Now, we make the connection to the family of so-called priority
policies. A priority policy is a policy that fixes an ordering ⌧ of the states, where this ordering depends
only on the individual Markov chain associated with each arm, the associated vector of rewards, and the
discount factor (not on the number of arms or the initial conditions), and when faced with a set of states
for the N arms, always selects the arm whose state appears highest in this ordering. Thus ⌧(1) refers to the
most-favorable state, with ⌧(|S|) referring to the least-favorable state. Note that there are |S|! such policies,
one for each ordering of the states.

Note that, by a simple induction. a ⌧ -priority policy is equivalent to a policy that favors {⌧(1)} over
{⌧(1)}c, AND favors {⌧(1), ⌧(2)} over {⌧(1), ⌧(2)}c, etc. Namely, a ⌧ -priority policy is equivalent to a
policy that is {

S
j

i=1 ⌧(i)}-favoring for j = 1, . . . , |S| � 1. It follows from the above that if the policy ⇡

is a ⌧ -priority policy, then for all N and M0, x
⇡,N,M0 satisfies the inequalities associated with sets {S \S

j

i=1 ⌧(i)}, j = 1, . . . , |S| � 1 with equality, as well as the equality
P

i2S
A

S

i
x
⇡,N,M0
i

= bM0(S). But since

{S \
S

j

i=1 ⌧(i)}, j = 1, . . . , |S| are nested, it follows that we may order these equalities s.t. the set of
components of x⇡,N,M0 with strictly positive coe�cients is strictly increasing as we move down the list of
equalities. But by straightforward linear algebra, this implies the constraint matrix for this set of equalities

16

is full-dimensional, and invertible. As of course x⇡,N,M0 is also non-negative, it follows that incredibly, when
⇡ is a ⌧ -priority policy, x⇡,N,M0 is the unique solution to the set of equations

X

i2S\
Sj

k=1 ⌧(k)

A
S\

Sj
k=1 ⌧(k)

i
xi = bM0(S \

j[

k=1

⌧(k)) , j = 1, . . . , |S|� 1;

X

i2S

A
S

i
xi = bM0(S).

One may have thought that analyzing the performance of such a priority-policy was very challenging, but
amazingly we may compute its performance by solving this simple |S|-dimensional system of equations.
Furthermore, it follows that for every ⌧ -priority policy ⇡, x

⇡,N,M0 is a basic feasible solution of our LP
relaxation. Of course, the concern is that since we merely wrote down a relaxation, our relaxation may have
other vertices that do not even correspond to any policy, not-to-mention a priority policy.

We now prove that remarkably, the aforementioned basic feasible solutions are the ONLY vertices of
our LP relaxation. Let us reflect on what this means. It would mean that we had written down an LP
relaxation, then proven that certain vertices correspond to vectors acheived by simple policies, then proven
that THERE ARE NO OTHER VERTICES. Namely, although the vector for every feasible policy appears
in the polytope, it would mean that none of those vectors are vertices, i.e. they can be acheived as convex
combinations of what can be acheived by priority policies. Furthermore, it implies that for any given reward
vector, there is an optimal priority policy, i.e. Gittin’s index theorem.

We proceed as follows. First, we write down the dual. Second, we construct a particular feasible solution
to the dual. Third, we construct a feasible primal solution corresponding to a particular priority policy (with
the priority not depending on N orM0, only on the underlying Markov chain of each arm, the discount factor,
and the reward vector) which, along with our particular dual solution, satisfies complementary slackness. It
will then follow from the general complementary slackness theorem that our primal solution is optimal. As
our procedure will work for any vector of rewards, it will follow that for any vector of rewards there exists
an optimal priority policy. As for any given vertex there must exist some cost vector for which that vertex
is uniquely optmal, it will follow that the basic feasible solutions corresponding to the priority policies are
in fact the only vertices of our LP relaxation, i.e. our relaxation was actually not a relaxation at all and
Gittin’s index theorem holds.

Thus returning to our final LP formulation, let us take the dual. We find that the dual of our LP
relaxation is:

min
y2R2S

X

S22S

bM0(S)yS ,

s.t. X

S22S :i2S

A
S

i
yS � R(i) for all i 2 S;

yS  0 for all S 2 2S , S 6= S, ;.

Note that YS is not sign-restricted. As discussed, we begin by identifying a particular dual-feasible solution y

to use in a primal-dual complimentary slackness pair. Our dual solution will have exactly |S| non-zero values,
one for each state i. Those yS with non-zero value will have a very special structure: namely, the sets will be
nested. In particular, the non-zero elements of our dual solution will be yS , yS\i1

, yS\i1,i2
, . . . , yS\i1,...,i|S�1

for some ordering of the states i1, . . . , in. As it will be convenient, let us denote this “ordering” using the
permutation ⌧ . Thus the identity of state i1 equals ⌧(1), etc. In that case, the non-zero elements of our dual
solution will be yS , yS\⌧(1), yS\⌧(1),⌧(2), For such a vector y, dual feasibility becomes:

A
S

⌧(1)yS � R
�
⌧(1)

�
;

A
S

⌧(2)yS +A
S\⌧(1)
⌧(2) yS\⌧(1) � R

�
⌧(2)

�
;

17

A
S

⌧(3)yS +A
S\⌧(1)
⌧(3) yS\⌧(1) +A

S\⌧(1),⌧(2)
⌧(3) yS\⌧(1),⌧(2) � R

�
⌧(3)

�
;

. . .

A
S

⌧(k)yS +
k�1X

i=1

A
S\

Si
j=1 ⌧(j)

⌧(k) y
S\

Si
j=1 ⌧(j) � R

�
⌧(k)

�
, k = 4, . . . , |S|� 1;

y
S\

Si
j=1 ⌧(j)  0, i = 1, . . . , |S|� 1.

We will go one step further, and actually find a dual solution satisfying the above with equality (except for
the non-positivity constraints, which may be satisfied with inequality), i.e. satisfying

A
S

⌧(k)yS +
k�1X

i=1

A
S\

Si
j=1 ⌧(j)

⌧(k) y
S\

Si
j=1 ⌧(j) = R

�
⌧(k)

�
, k = 1, . . . , |S|� 1;

y
S\

Si
j=1 ⌧(j)  0, i = 1, . . . , |S|� 1.

As before, for any given ⌧ this gives a full-dimensional set of equalities. We note that apriori, it is not clear
that for the given reward vector, there is any way to select ⌧ (possibly depending on the reward vector) such
that when one solves this system, one gets a feasible (i.e. satisfying the required non-positivity) solution.
We now prove that for any given reward vector, there is a systematic way to identify such a ⌧ , and this shall
yield the dual solution in our prima-dual pair.

We proceed as follows. The first equality tells us that

yS =
R
�
⌧(1)

�

A
S

⌧(1)

;

while the second equality tells us that

A
S

⌧(2)yS +A
S\⌧(1)
⌧(2) yS\⌧(1) = R

�
⌧(2)

�
;

equivalently

yS\⌧(1) =
R
�
⌧(2)

�
�A

S

⌧(2)yS

A
S\⌧(1)
⌧(2)

.

Similarly, the third equality tells us that

A
S

⌧(3)yS +A
S\⌧(1)
⌧(3) yS\⌧(1) +A

S\⌧(1),⌧(2)
⌧(3) yS\⌧(1),⌧(2) = R

�
⌧(3)

�
;

equivalently

yS\⌧(1),⌧(2) =
R
�
⌧(3)

�
�
�
A

S

⌧(3)yS +A
S\⌧(1)
⌧(3) yS\⌧(1)

�

A
S\⌧(1),⌧(2)
⌧(3)

.

Note that, more generally, by a simple induction, the value of yS\⌧(1),⌧(2),...,⌧(k) is determined by our choices
of ⌧(1), . . . , ⌧(k + 1), with yS determined by our choice of ⌧(1). Ideally, we would like a mechanism which
ensures that, supposing we have picked ⌧(1), . . . , ⌧(k) in such a manner to ensure that yS\⌧(1),⌧(2),...,⌧(i)  0
for i = 1, . . . , k � 1, it is somehow “easy” to select ⌧(k + 1) from S \ ⌧(1), . . . , ⌧(k) in a manner to ensure
that yS\⌧(1),⌧(2),...,⌧(k)  0. If we had such a procedure, we could simply apply it inductively to derive a
dual-feasible solution. We now derive an “extreme” version of such a procedure. In particular, we derive
a procedure for iteratively selecting the elements of ⌧ , one at a time, such that once we have selected
⌧(1), . . . , ⌧(k), we may select ANY element for ⌧(k + 1) from S \ ⌧(1), . . . , ⌧(k) and still be certain that
yS\⌧(1),⌧(2),...,⌧(k)  0. Of course, instead of selecting “any element”, we will want to select the element that
will allow us “continue” the induction to the remaining equalities (not just the immediately next equality).

Let us begin by thinking on just ⌧(1). We would like to select ⌧(1) in such a way that any choice for

18

⌧(2), from S \ ⌧(1), will ensure that yS\⌧(1)  0; equivalently that for all choices for ⌧(2) 2 S \ ⌧(1), it holds
that

R
�
⌧(2)

�
�A

S

⌧(2)yS

A
S\⌧(1)
⌧(2)

 0,

equivalently
R
�
⌧(2)

�
�A

S

⌧(2)yS  0;

equivalently

yS �
R
�
⌧(2)

�

A
S

⌧(2)

;

equivalently
R
�
⌧(1)

�

A
S

⌧(1)

�
R
�
⌧(2)

�

A
S

⌧(2)

.

Of course, this is accomplished by setting ⌧(1) equal to the state MAXIMIZING (over ALL states i)
R

�
i

�

A
S

i
.

Suppose we have done this, and select ⌧(1) as the corresponding argmax.
Next, let us consider ⌧(2). We would like to select ⌧(2) in such a way that for all ⌧(3) 2 S \ ⌧(1), ⌧(2),

R
�
⌧(3)

�
�
�
A

S

⌧(3)yS +A
S\⌧(1)
⌧(3) yS\⌧(1)

�

A
S\⌧(1),⌧(2)
⌧(3)

 0,

equivalently

R
�
⌧(3)

�
�
�
A

S

⌧(3)yS +A
S\⌧(1)
⌧(3) yS\⌧(1)

�
 0;

equivalently

yS\⌧(1) �
R
�
⌧(3)

�
�A

S

⌧(3)yS

A
S\⌧(1)
⌧(3)

;

equivalently
R
�
⌧(2)

�
�A

S

⌧(2)yS

A
S\⌧(1)
⌧(2)

�

R
�
⌧(3)

�
�A

S

⌧(3)yS

A
S\⌧(1)
⌧(3)

.

Of course, we can ensure this by selecting ⌧(2) to be the index which maximizes

R
�
i
�
�A

S

i
yS

A
S\⌧(1)
i

over all states i in S \ ⌧(1). More generally, note that

y
S\

Sk
j=1 ⌧(j) =

R
�
⌧(k + 1)

�
�A

S

⌧(k+1)yS �
P

k�1
i=1 A

S\
Si

j=1 ⌧(j)

⌧(k+1) y
S\

Si
j=1 ⌧(j)

A
S\

Sk
j=1 ⌧(j)

⌧(k+1)

.

Thus
y
S\

Sk
j=1 ⌧(j)  0

is equivalent to

R
�
⌧(k + 1)

�
�A

S

⌧(k+1)yS �

k�1X

i=1

A
S\

Si
j=1 ⌧(j)

⌧(k+1) y
S\

Si
j=1 ⌧(j)  0,

19

itself equivalent to

y
S\

Sk�1
j=1 ⌧(j) �

R
�
⌧(k + 1)

�
�A

S

⌧(k+1)yS �
P

k�2
i=1 A

S\
Si

j=1 ⌧(j)

⌧(k+1) y
S\

Si
j=1 ⌧(j)

A
S\

Sk�1
j=1 ⌧(j)

⌧(k+1)

,

itself equivalent to

R
�
⌧(k)

�
�A

S

⌧(k)yS �
P

k�2
i=1 A

S\
Si

j=1 ⌧(j)

⌧(k) y
S\

Si
j=1 ⌧(j)

A
S\

Sk�1
j=1 ⌧(j)

⌧(k)

�

R
�
⌧(k + 1)

�
�A

S

⌧(k+1)yS �
P

k�2
i=1 A

S\
Si

j=1 ⌧(j)

⌧(k+1) y
S\

Si
j=1 ⌧(j)

A
S\

Sk�1
j=1 ⌧(j)

⌧(k+1)

.

Of course, this can be ensured by selecting ⌧(k) to be the state l 2 S \ ⌧(1), . . . , ⌧(k � 1) which maximizes

R
�
l
�
�A

S

l
yS �

P
k�2
i=1 A

S\
Si

j=1 ⌧(j)

l
y
S\

Si
j=1 ⌧(j)

A
S\

Sk�1
j=1 ⌧(j)

l

.

The above may be formalized through a straightforward induction, the details of which we omit. Namely,
we arrive at a feasible dual solution satisfying our desired requirements if we select ⌧ as follows.

⌧(1) is selected to the state maximizing
R

�
i

�

A
S

i
over all states i 2 S, where we note that this is equivalent

to the state of highest reward. As we wish to allow for general reward vectors, we note that this may result
in yS being positive or negative, but that this is fine as it is unrestricted in sign. Next, supposing we have
selected ⌧(1), . . . , ⌧(k � 1), we select ⌧(k) to be the state l 2 S \ ⌧(1), . . . , ⌧(k � 1) maximizing

R
�
l
�
�A

S

l
yS �

P
k�2
i=1 A

S\
Si

j=1 ⌧(j)

l
y
S\

Si
j=1 ⌧(j)

A
S\

Sk�1
j=1 ⌧(j)

l

.

We thus have our dual-feasible solution y
⌧ , where we note that (as per our above algorithm for constructing

the dual solution) y
⌧ , and more generally the particular permutation ⌧ , depends only on the the specific

Markov chain (for each state), the discount factor, and the specific vector of rewards, but NOT N or
M0. We note that y

⌧

S
is possibly non-zero only for S = S,S \ ⌧(1),S \ ⌧(1), ⌧(2), etc. However, if we

consider the primal feasible solution corresponding to the ⌧ -priority policy, this primal solution is binding
for exactly the corresponding inequalities in the primal. As the dual solution is binding for every (non-sign-
related) inequality, the dual solution is trivially binding for the corresponding non-zero components in the
⌧ -priority policy primal solution (which may be any number of the primal components). Thus it follows from
complementary slackness that this primal-dual pair satisfies complementary slackness, and hence respective
optimality (for the dual and primal). Thus the ⌧ -priority policy is optimal.

We further note that the above procedure not only proves existence of an optimal index policy for any
given reward vector, but actually yields an EFFICIENT algorithm for computing the correspoding priority.
Note that since the original LP had an exponential number of inequalities, e�cient optimization was not a
given (as even e�cient separation was not obvious). Although we will not formally analyze the runtime, such
an analysis has been done and it can be shown to yield a formally polynomial-time algorithm, whose runtime
scales completely independent of N (and is polynomial in the input size of the Markov chain, rewards, etc.).
As already stated, this then yields a very e�cient algorithm for actually solving the Bayesian multi-arm
bandit problem, which scales almost linearly in the number of arms (we will not conduct a precise analysis
here). We also note that the above proof can be extended to the setting of an infinite (even uncountably
infinite) number of states, although we do not pursue that here (we will use the fact that Gittin’s theorem
holds in essentially total generality).

Let us do part of the calculation for the example we considered previously. Namely, suppose there are

20

five states, 0,1,2,3,4. R(0) = 2.5, P0,i =
1
4 for i = 1, 2, 3, 4; R(i) = i for i = 1, 2, 3, 4; Pi,i = 1 for i = 1, 2, 3, 4.

Let us compute ⌧(1) and ⌧(2). We proceed as follows. We set ⌧(1) = 4, yS = 4. We then solve

max
l=0,1,2,3

R(l)� yS

A
{0,1,2,3}
l

= max
l=0,1,2,3

R(l)� 4

E[
PT

{0,1,2,3}
l �1

k=0 �k]
.

To do this, we must compute E[
PT

{0,1,2,3}
l �1

k=0 �
k] for l = 0, 1, 2, 3. Note that T

{0,1,2,3}
l

= 1 (w.p.1) for

l = 1, 2, 3. T
{0,1,2,3}
0 = 1 w.p. 3

4 , and equals 1 w.p. 1
4 . Thus E[

PT
{0,1,2,3}
l �1

k=0 �
k] = 1 for l = 1, 2, 3, and

equals 3
4 +

1
4 ⇥

1
1��

for l = 0. Thus ⌧(2) = 0 if 2.5�4
3
4+

1
4⇥

1
1��

is larger than maxl=1,2,3(l� 4) = �1. Equivalently,

�
3

2
� �

�3
4
+

1

4
⇥

1

1� �

�
,

equivalently

�
3

4
+

1

4
⇥

1

1� �
� 0,

equivalently 3(1� �)  1, equivalently � �
2
3 , in agreement with our previous answer.

Although we could proceed mechanically, the calculations become somewhat cumbersome for a human
(although can be easily coded up e�ciently on a computer).

1.8.5 Review of Gittin’s theorem

To review, we now formally state the Gittin’s index theorem. We only state for the case in which the rewards
are bounded and the underlying Markov chain is countable, but note that these results typically hold for
much more general systems. We state only for the case in which all arms see the same chain, as we have
already argued that this is w.l.o.g. We note as we want a statement that covers countably infinite Markov
chains, and also clearly states how a policy should handle ties, we will map states to a table instead of a
list (with ties broken by the second dimension). We note that when the Markov chain is finite, no such
additional complexity is needed.

Gittin’s index theorem (for the MCSP): For any given discount factor and any given underlying countable-
state Markov chain (and associated set of state-dependent rewards) for which the rewards (associated to the
di↵erent states) are uniformly bounded (over all states), the following is true. There exists a deterministic
mapping ⇡, from the states of the Markov chain to [0, 1]2 (i.e. the unit box), such that an optimal policy
is (in each period t) to examine the states of the chains in all arms, and play the arm whose state has the
highest first component under this mapping. In the case of ties, of all arms whose state has the highest first
component, play the arm whose state has the highest second component. In case two arms have the same
exact state, play the arm with lowest index. Importantly, ⇡ can be taken independent of the number of
arms, the initial conditions, the random realizations of the process, and time itself, depending only on the
discount factor, the underlying Markov chain of any one arm, and the reward vector associated to the states
of that chain.

We now restate the theorem in the context of the original Bayesian MAB problem. We again w.l.o.g.
restrict to the setting in which all arms have the same prior on reward distributions.

Gittin’s index theorem (for the Bayesian MAB): For any given discount factor and any given prior over
reward distributions s.t. there exists a finite or countably infinite and bounded set Q of real numbers s.t.
the unconditional probability that a reward belongs to Q equals 1, the following is true. There exists a
deterministic mapping ⇡, from the collection of finite unordered subsets of Q to [0, 1]2, such that an optimal
policy is (in each period t) to examine the sequence of realized observations on each arm (as a finite unordered
subsets of Q), and play the arm whose set has the highest first component under this mapping. In the case
of ties, of all arms whose set has the highest first component, play the arm whose set has the highest second
component. In case two arms have the same exact history, play the arm with the lowest index. Importantly,
⇡ can be taken independent of the number of arms, the initial conditions, the random realizations of the
process, and time itself, depending only on the discount factor, and the underlying prior of any one arm.

21

1.9 Understanding the index as an optimization over stopping times

OK, so we have an elegant polyhedral way to derive the optimal permutation for any given problem. However,
this sheds little inuitive light on e.g. how to think about, for the Beta-Bernoulli problem, how “good” any
given state (n0, n1) is. Once we know that an index policy is optimal, we can easily derive another “more
convenient” way to think about how to rank the states as follows. Let us begin by thinking on the so-called
1 1
2 -arm problem, in which one has two arms, one of which is associated with some non-trivial Markov chain

(i.e. regular arm), the other of which is associated with a state with reward x that loops to itself (i.e. known
arm), and is e↵ectively disconnected from the Markov chain of the other arm. In this case, when is it optimal
to pull the non-trivial arm first? Note that as we restrict to stationary optimal policies, if we ever play the
known arm, we will continue to play that known arm forever. Thus the overall MCSP optimization problem
is equivalent to determining a. Do you pull the regular arm first, and b. If you pull the regular arm first,
when do you stop pulling the regular arm and switch to the known arm (at which time you play the known
arm forever). Note that any such decision must be based solely on which states the regular arm has visited
so far, i.e. it must be adapted to the corresponding filtration generated by the states visited by the regular
arm’s Markov chain. In particular, w.r.t. this filtration, it must be a stopping time ⌧ . Namely, in the 1 1

2 -arm
bandit problem, the associated optimization reduces to deciding to either play the known arm the entire
time, or play “the best” stopping time on the regular arm, and then switching to the known arm. What is
the performance of a given stopping time ⌧ , letting st denote the state of the regular arm’s Markov chain
after it has advanced t time periods (with the initial state s0)? One gets

P
⌧

t=1 R(st�1)�t + �
⌧
x

�

1��
, with

expectation E[
P

⌧

t=1 R(st�1)�t + �
⌧
x

�

1��
]. Now, what does it mean for it to be optimal to play the regular

arm first? It should be that there exists some stopping time ⌧ , which is at least 1 with probability 1, such
that this expectation is at least x �

1��
, or at least that the supremum over all such stopping times is at least

x
�

1��
. For a given stopping time ⌧ ,

E[
⌧X

t=1

R(st�1)�
t + �

⌧
x

�

1� �
] � x

�

1� �

i↵

E[
⌧X

t=1

R(st�1)�
t + �

⌧
x

�

1� �
]� x

�

1� �
� 0

i↵

E[
⌧X

t=1

R(st�1)�
t + x

1X

t=⌧+1

�
t
� x

1X

t=1

�
t] � 0

i↵

E[
⌧X

t=1

R(st�1)�
t
� x

⌧X

t=1

�
t] � 0

i↵
E[

P
⌧

t=1 R(st�1)�t]

E[
P

⌧

t=1 �
t]

� x

i↵
E[

P
⌧�1
t=0 R(st)�t+1]

E[
P

⌧�1
t=0 �t+1]

� x

Thus let T denote the set of all stopping times which are at least 1 w.p.1 for the initial condition s0 (note
that a stopping time may equal 1). Note that by general results from the theory of MDP we may take ⌧

to be a function only of the current state, not the entire history, and we further restrict T to such stopping
times. In that case, it is strictly optimal to play the regular arm, starting in state s0, first if

sup
⌧2T

E[
P

⌧�1
t=0 R(st)�t+1]

E[
P

⌧�1
t=0 �t+1]

> x.

22

To make the dependence on s0 explicit, we further denote this as

sup
⌧2T

E[
P

⌧�1
t=0 R(st)�t+1

|s0]

E[
P

⌧�1
t=0 �t+1|s0]

> x.

Similarly, it must be strictly optimal to play the known arm first if

sup
⌧2T

E[
P

⌧�1
t=0 R(st)�t+1

|s0]

E[
P

⌧�1
t=0 �t+1|s0]

< x.

Now, a simple argument shows that we can in fact take the order on S induced by sup
⌧2T

E[
P⌧�1

t=0 R(st)�
t+1

|s0]

E[
P⌧�1

t=0 �t+1|s0]

to BE the Gittin’s order. Indeed, Note that for each x 2 R, we can augment the states of the Markov chain
by a state which loops to itself and has reward x. As Gittin’s theorem applies in total generality, it will
also apply to this extended Markov chain. Note that since if none of the initial states are special in this
way, the relevant optimization reduces to that with none of the x added (as the original Markov chain does
not communicate with these states and visa-versa), the relative order of the original states in a priority
policy which is optimal for this augmented chain must also be optimal for the original problem. As Gittin’s
theorem says that our preference list does not depend on the number of arms, the following must be true: If
faced with just two arms, one of which is state s1 and one of which is state x, it is strictly optimal to play
state s1 first; AND if faced with just two arms, one of which is state s2 and one of which is state x, it is
strictly optimal to play state x first; THEN it must be that state s1 appears before state s2 in some optimal
solution to the original problem. Now, suppose that (simultaneously) for every pair of states (si, sj), there
existed some xi,j which determined the relative order of si and sj in the same way. Then the same logic
would dictate the entire ordering on the original states. Combining the above, and assuming no ties, we find
that (as we know some index policy is optimal) we can thus take our optimal ordering to be dictated by the
aforementioned index. Namely, to each state s, we assign the index

sup
⌧2T

E[
P

⌧�1
t=0 R(st)�t+1

|s0 = s]

E[
P

⌧�1
t=0 �t+1|s0 = s]

We then take the ordering of the indices as the optimal permutation. Indeed, this precise index is what is
formally known as the Gittin’s index. We note that in the case of ties, it can be shown that one gets an
optimal policy as long as one imposes any fixed order on those states at time 0 and consistently plays the
resulting order.

23

