ORIE 6180: Design of Online Marketplaces Spring 2016
Lecture 5 — February 17

Lecturer: Sid Banerjee Scribe: Daniel Freund

@ We actually used Tonelli’s Theorem in this class.

5.1 Overview of the last lecture

Last lecture we proved Myerson’s Lemma:

Lemma 5.1. For single parameter settings an allocation rule x(b) is implementable if and
only if it is monotone. Moreover, there is a unique payment rule (assuming p;(0) = 0)

pi(vi) = virs (v, v_y) — / Z xi(z,v;)dz = / 1 xi(z,v_;)dz
0 0

Recall that an allocation rule z(b) is monotone if Vi, b_;, z;(z,b_;) is non-decreasing in z
and implementable if there exists a payment-rule p, such that (z,p) is DSIC.

5.2 Overview of this lecture
In this lecture we use Myerson’s lemma to design a DSIC maximizing the revenue R =
> . pi(b). The extension thereof to BIC mechanisms can be found in [1}, Chapter 1 and 2.
5.3 Maximizing Revenue
Consider n agents with values v; ~ F;, F;1l. We aim to design a DSIC mechanism to
maximize E[R] = E¢py[> . pi(vi, v_)].

By Myerson’s Lemma, there is a unique one payment rule for which an allocation rule

x(b) is DSIC.
We begin by expressing E[R] in terms of the allocation z(b):
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Notice that the second inequality holds by linearity of expectation. We now assume that
v; € [0, Umax) and d%z) = fi(z). We can then write

EFF_ [pi(Ui, U—i)]

=Ep, [/U x;(z,v,i)zdz}
0
= /Ovmax [/Ow x;(z,v_i)zdz} fi(v;)dv;
— /Ovmax [/:mx fi(vi)dvi} za!(z,v_;)dz

= /O”max [1 — E(z)] zr'(z,v_;)dz
= [(1 = F(2)zai(z,0-) | ™ — /Ovmax [1 — Fi(2) — Zfz(z)]ﬂfi(za v_i)dz

_ /Ovmax (z — 1}TF;)<Z)>$Z(Z, v_;) fi(2)dz
=Ep, [(ﬁz(vl)xl(vz, U-i)] )

where ¢(z) = z — 1}2()2) is the virtual valuation function of 4.

Notice that the Zérst equality above holds by independence and the payment rule in
Myerson’s Lemma. The third equality holds by Tonelli’s Theorem as x is monotone, implying
that the x; are non-decreasing and x; > 0. The fifth equality is integration by parts.

We can then express

E[R] = ZEFZ',F%[@(W)%(%;Ufz')] = EF[Z<Z5(%)SC¢(U¢,U¢) ,

implying that maximizing revenue is the same as maximizing virtual welfare.

5.3.1 Example: single item, single bidder
We maximize E[R]:
B B 1—F(v)
E[R] = E[¢(v)z(v)] = E [('U - W)x(v)} .
1-F(v)

It is easy to see that this is maximized if we set x, = 1 if and only if v — N ON > 0. We then
charge p = ¢1(0), which is the same as the monopoly price that maximized p(1 — F(p)) as

d (1= F(p)
P F ) = (—f(p)
1-F(p)

is 0 for p = ) and for such p we have ¢(p) = 0.

—p)f(p)
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5.3.2 Example: n agents, F; ~ F' (i.i.d.)

We now have E[R] = Epn[) . ¢(v;)x (v, v_;)].
To maximize the virtual surplus, we solicit bids b; and simulate VCG on ¢, i.e.: (z,p) =

VCG(¢(b)).

Definition 1. VCG(¢(b)) is monotone if and only if ¢(-) is monotone (non-decreasing). We
call distributions giving rise to non-decreasing ¢ regular distributions.

Remark: Notice that ¢ is monotone for uniform, exponential and most other natural
distributions. It is easy though to construct examples here ¢ is not monotone using mixed
distribution.?

Consider the auction of a single item, n agents with i.i.d. values coming from a regular
distribution. Let (x,p) = VCG(¢(b)). Define the critical value for bidder is as the value v;",
when i starts to get i, i.e.: ¢(v;) = max;.;{¢(v;),0}. Then the resulting price for ¢ is

)

po = max { mac{o ™ (6(0;))}, 67 (0) } = max { max{v,}, 67 (0)}

'If ¢ is not regular, apply a technique called ironing.
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