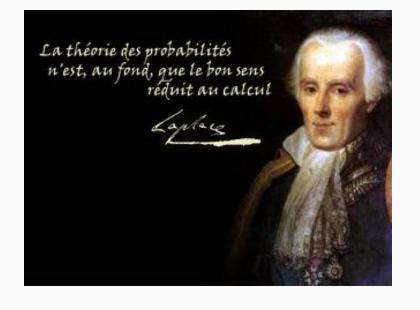
ORIE 4742 - Info Theory and Bayesian ML

Lecture 1: Probability Review

January 23, 2020

Sid Banerjee, ORIE, Cornell

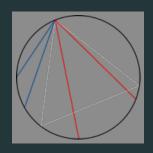


"probability theory is common sense reduced to calculation"

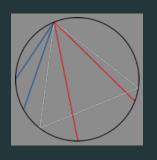
Bertrand's problem

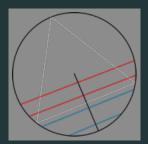
Bertrand's problem

paradox

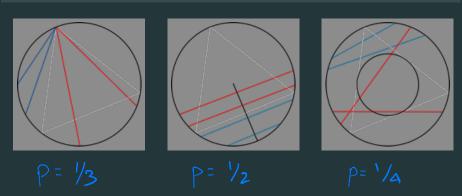


Bertrand's problem



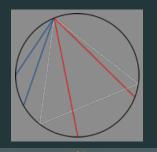


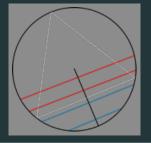
Bertrand's problem

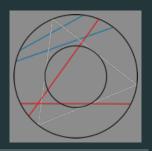


Bertrand's problem

given an equilateral triangle inscribed in a circle, and a random chord, what is the probability the chord is longer than the side of the triangle?







the moral (for this course... and for life)

be very precise about defining experiments/random variables/distributions

also see Wikipedia article on Bertrand's paradox

the essentials

reading assignment

Bishop: chapter 1, sections 1.2 - 1.2.4

Mackay: chapter 2 (less formal, but much more fun!)

things you must know and understand

- random variables (rv) and cumulative distribution functions (cdf)
- conditional probabilities and Bayes rule
- expectation and variance of random variables
- independent and mutually exclusive events
- basic inequalities: union bound, Jensen, Markov/Chebyshev
- common rvs (Bernoulli, Binomial, Geometric, Gaussian (Normal))

sample space, random variable

random experiment: outcome cannot be predicted in advance.

sample space Ω : the set of all possible outcomes of the experiment

random variable: any function from $\Omega o \mathbb{R}$ (random vector: $\Omega o \mathbb{R}^d$)

example: flip two coins, and let
$$X = \#$$
 of heads (P[hous] = h)

$$\Omega = \begin{cases}
HH', HT', TH', TT \\
h^2 & h(1-h) & (1-h)h & (1-h)^2 \\
X & \vdots & 2 & 1 & 1 & 0
\end{cases}$$

cumulative distribution function

ALERT!!

always try to think of probability and rvs through the cdf

for any rv X (discrete or continuous), its probability distribution is defined by its cumulative distribution function (cdf)

$$F(x) = \bigcap X \leq x$$

using the cdf we can compute probabilities

$$\mathbb{P}[a < X \le b] = - \left\lceil \left(b \right) - \left\lceil \left(a \right) \right\rceil \right\rceil$$

visualizing a cdf

The plot of a cdf obeys 3 essential rules + one convention

Example: consider an $rv \in [-2, 5]$ with a **jumps** at 1 and 2

1)
$$F(x) \in [0,1]$$
, $2 = 0$, $\lim_{x \to \infty} F(x) = 1$
3) $F(x)$ is non-decreasing
4) $(x \in x)$
1 vight continuous, left limits

discrete random variables

for a discrete random variable taking values in \mathbb{N} , another characterization is its probability mass function (pmf) $p(\cdot)$

$$p(x) = \mathbb{P}[X = x]$$

• any pmf p(x) has the following properties:

$$p(x) \in [0,1] \, \forall \, x \in \mathbb{N}$$
 , $\sum_{x \in \mathbb{N}} p(x) = 1$

ullet the pmf $p(\cdot)$ is related to the cdf $F(\cdot)$ as

$$F(x) = \sum_{y \le x} P(y)$$

$$p(x) = \left[(x) - \left[(x-1) \right] \right]$$

continuous random variables

for a continuous random variable taking values in \mathbb{R} , another characterization is its probability density function (pdf) $f(\cdot)$

$$\mathbb{P}[a < X \leq b] = \int_{0}^{b} \int_{0}^{\infty} f(x) dx$$

• any pdf f(x) has the following properties:

$$f(x) \ge 0 \, \forall \, x \in \mathbb{R}$$
 , $\int_{-\infty}^{\infty} f(x) dx = 1$

• ALERT!! It is not true that $f(x) = \mathbb{P}[X = x]$. In fact, for any x,

$$\mathbb{P}[X=x] = \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$$

continuous random variables

thus, for continuous rv X with pdf $f(\cdot)$ and cdf $F(\cdot)$, we have

$$\mathbb{P}[a < X \leq b] = F(b) - F(a) = \int_a^b f(x) dx$$

now we can go from one function to the other as

$$F(x) = \int_{-\infty}^{\infty} f(x) dx$$

$$f(x) = \frac{d}{dx} F(x)$$
 (assuming differentiable...)

expected value (mean, average)

let X be a random variable, and $g(\cdot)$ be any real-valued function

• If X is a discrete rv with $\Omega = \mathbb{Z}$ and pmf $p(\cdot)$, then

$$\mathbb{E}[X] = \sum_{x} x p(x)$$

$$\mathbb{E}[g(X)] = \sum_{x} g(x) p(x) \qquad \left(\text{Eg - } g(x) = (x - \mathbb{E}[X])^{2} \right)$$

$$\Rightarrow \mathbb{E}[g(X)] = \text{Van}(X)$$

• If X is a continuous rv with $\Omega=\mathbb{R}$ and $\operatorname{pdf} f(\cdot)$, then

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} dx$$

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} c_{j}(x) \int_{-\infty}^{\infty} dx$$

variance and standard deviation

• Definition:
$$Var(X) = \left[\begin{array}{c} & & \\ & \\ & \end{array} \right]^2$$

$$\sigma(X) = \int_{Van}(x) dx$$

• (More useful formula for computing variance)

Var(X) =
$$\mathbb{E}\left[\left(X - \mathbb{E}[X]\right)^{2}\right]$$
=
$$\mathbb{E}\left[\left(X^{2} - 2 \times \mathbb{E}[X] + \mathbb{E}[X]^{2}\right]\right]$$
=
$$\mathbb{E}\left[X^{2}\right] - 2\mathbb{E}[X]^{2} + \mathbb{E}[X]^{2}$$
=
$$\mathbb{E}\left[X^{2}\right] - \mathbb{E}[X]^{2} + \mathbb{E}[X]^{2}$$
=
$$\mathbb{E}\left[X^{2}\right] - \mathbb{E}[X]^{2} + \mathbb{E}[X]^{2}$$
Why? because $g(x) \ge 0$

Universal property!

independence

what do we mean by "random variables X and Y are independent"? (denoted as $X \perp \!\!\! \perp Y$; similarly, $X \not \!\! \perp \!\!\! \perp Y$ for 'not independent')

intuitive definition: knowing X gives no information about Y

formal definition:
$$P[X \in Z, Y \in y] = F(x) F(y) + xy \in \mathbb{R}$$

One measure of independence between rv is their covariance

$$Cov(X,Y) = \mathbb{E}[X - \mathbb{E}[X]] (Y - \mathbb{E}[Y])$$
 (for computing)
$$= \mathbb{E}[X - \mathbb{E}[X]] (Y - \mathbb{E}[Y])$$
 (for computing)

independence and covariance

how are independence and covariance related?

- X and Y are independent, then they are uncorrelated in notation: X ⊥ Y ⇒ Cov(X, Y) = 0
- however, uncorrelated rvs can be dependent
 in notation: Cov(X, Y) = 0 ⇒ X ⊥⊥ Y
- Cov(X, Y) = 0 ⇒ X ⊥⊥ Y only for multivariate Gaussian rv (this though is confusing; see this Wikipedia article)

linearity of expectation

for any rvs X and Y, and any constants $a,b\in\mathbb{R}$

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

note 1: no assumptions! (in particular, does not need independence)

linearity of expectation

for any rvs X and Y, and any constants $a,b \in \mathbb{R}$

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

note 1: no assumptions! (in particular, does not need independence) note 2: does not hold for variance in general

for general X, Y

$$Var(aX + bY) =$$

when X and Y are independent

$$Var(aX + bY) =$$

using linearity of expectation

the TAs get lazy and distribute graded assignments among n students uniformly at random. On average, how many students get their own hw?

using linearity of expectation

the TAs get lazy and distribute graded assignments among n students uniformly at random. On average, how many students get their own hw?

Let
$$X_i = 1$$
 [student i gets her hw] (indicator rv)

N = number of students who get their own hw $= \sum_{i=1}^{10} X_i$ then we have:

$$egin{aligned} \mathbb{E}[\mathcal{N}] &= \mathbb{E}[\sum_{i=1}^n X_i] \ &= \sum_{i=1}^n \mathbb{E}[X_i] \ &= \sum_{i=1}^n \mathbb{P}[X_i = 1] = \sum_{i=1}^n rac{1}{n} = 1 \end{aligned}$$

inequality 1: The Union Bound

Let $A_1, \overline{A_2, \ldots, A_k}$ be events. Then

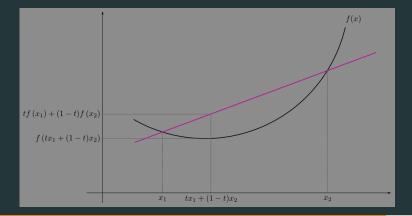
$$P(A_1 \cup A_2 \cup \cdots \cup A_k) \le (P(A_1) + P(A_2) + \cdots + P(A_k))$$

inequality 2: Jensen's Inequality

If X is a random variable and f is a convex function, then

$$\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])$$

Proof sketch (plus way to remember)



inequality 3: Markov and Chebyshev's inequalities

Markov's inequality

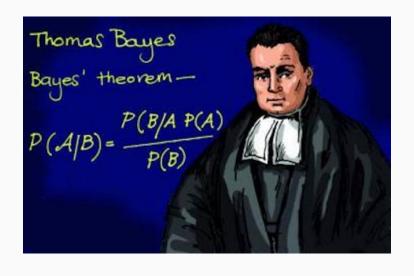
For any rv. $X \ge 0$ with mean $\mathbb{E}[X]$, and for any k > 0,

$$\mathbb{P}\left[X \geq k\right] \leq \frac{\mathbb{E}[X]}{k}$$

Chebyshev's inequality

For any rv. X with mean $\mathbb{E}[X]$, finite variance $\sigma^2>0$, and for any k>0,

$$\mathbb{P}\left[|X - \mathbb{E}[X]| \ge k\sigma\right] \le \frac{1}{k^2}$$



conditioning and Bayes' rule

marginals and conditionals

let X and Y be discrete rvs taking values in \mathbb{N} . denote the joint pmf:

$$p_{XY}(x,y) = \mathbb{P}[X = x, Y = y]$$

marginalization: computing individual pmfs from joint pmfs as

$$p_X(x) = \sum_{y \in \mathbb{N}} p_{XY}(x, y)$$
 $p_Y(y) = \sum_{x \in \mathbb{N}} p_{XY}(x, y)$

conditioning: pmf of X given Y = y (with $p_Y(y) > 0$) defined as:

$$\mathbb{P}[X = x | Y = y] \triangleq p_{X|Y}(x|y) = \frac{p_{XY}(x,y)}{p_{Y}(y)}$$

more generally, can define $\mathbb{P}[X \in \mathcal{A}|Y \in \mathcal{B}]$ for sets $\mathcal{A}, \mathcal{B} \in \mathbb{N}$ see also this visual demonstration

the basic 'rules' of Bayesian inference

let X and Y be discrete rvs taking values in \mathbb{N} , with joint pmf p(x, y)

product rule

for $x, y \in \mathbb{N}$, we have: $p_{XY}(x, y) = p_X(x)p_{Y|X}(y|x) = p_Y(y)p_{X|Y}(x|y)$

sum rule

for $x \in \mathbb{N}$, we have: $p_X(x) = \sum_{y \in \mathbb{N}} p_{X|Y}(x|y)p_Y(y)$

and most importantly!

Bayes rule

for any $x, y \in \mathbb{N}$, we have:

$$p_{X|Y}(x|y) = \frac{p_X(x)p_{Y|X}(y|x)}{\sum_{x \in \mathbb{N}} p_{Y|X}(y|x)p_X(x)}$$

see also this video for an intuitive take on Bayes rule

Mackay's three cards

We have three cards C1, C2, C3, with C1 having faces Red-Red.

A card is randomly drawn and placed on a table – its upper face is **Red** What is the colour of its lower face?

C1 = Red-Sue, C2 = Sue-Sue; C3 = Red-Red. A card is randomly drawn, and has upper face Red. What is the colour of its lower face?

Let $X \in \{C1, C2, C3\}$ be the identity of drawn card, $Y_b \in \{b, r\}$ be the color of bottom face, and $Y_t \in \{b, r\}$ be the color of top face. Then:

$$\mathbb{P}[Y_b = b | Y_t = b] = \mathbb{P}[X = C2 | Y_t = b] = \frac{\mathbb{P}[Y_t = b | X = C2] \mathbb{P}[X = C2]}{\mathbb{P}[Y_t = b]}$$
$$= \frac{1 \times (1/3)}{(1/2) \times (1/3) + 1 \times (1/3) + 0 \times (1/3)} = 2/3$$

ALERT!!

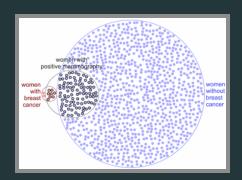
always write down the probability of everything

Eddy's mammogram problem

The probability a woman at age 40 has breast cancer is 0.01. A mammogram detects the disease 80% of the time, but also mis-detects the disease in healthy patients 9.6% of the time. If a woman at age 40 has a positive mammogram test, what is the probability she has breast cancer?

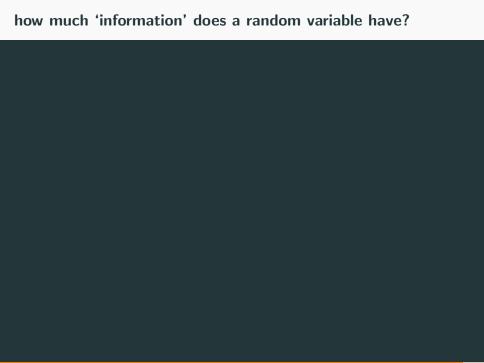
Eddy's mammogram problem

The probability a woman at age 40 has breast cancer is 0.01. A mammogram detects the disease 80% of the time, but also mis-detects the disease in healthy patients 9.6% of the time. If a woman at age 40 has a positive mammogram test, what is the probability she has breast cancer?



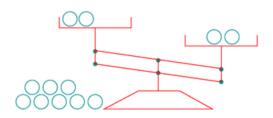
see also this video for more about the odds ratio

credit: Micallef et al.



Mackay's weighing puzzle

The weighing problem



You are given 12 balls, all equal in weight except for one that is either heavier or lighter.

Design a strategy to determine
which is the odd ball
and whether it is heavier or lighter,
in as few uses of the balance as possible.