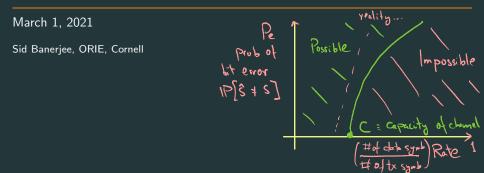
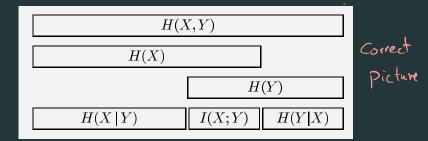


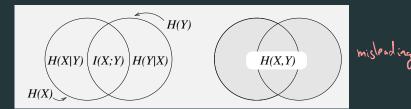
ORIE 4742 - Info Theory and Bayesian ML

Chapter 5: Channel Coding



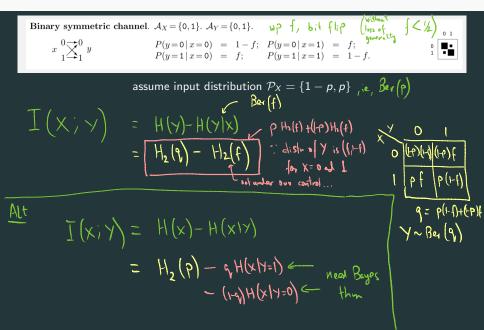
visualizing mutual information



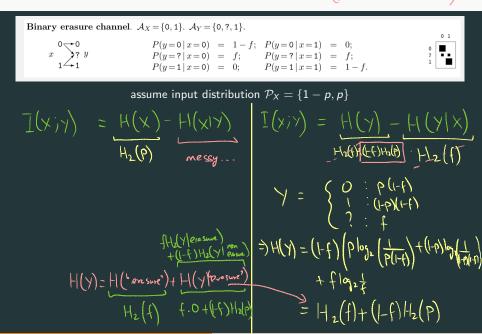


channel coding

mutual information for the BSC



mutual information for the erasure channel (good model for compression)



capacity of a channel

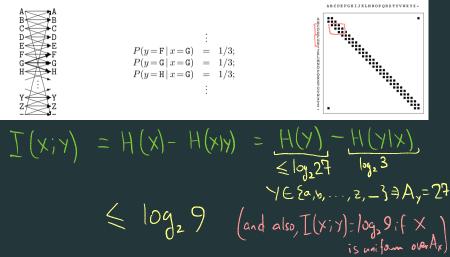
the capacity of a channel Q, with input A_X and output $A_{\mathcal{V}}$, is received signal any arg max \mathcal{P}_X^{\star} is called the optimal input distribution can communicate $\leq C$ bits of information per channel use without error! impossible achiever # of data symbols # of transmitted symbols

capacity of the BSC

Binary symmetric channel. $A_X = \{0, 1\}$. $A_Y = \{0, 1\}$. $x \stackrel{0}{\longrightarrow} \stackrel{1}{\longrightarrow} \stackrel{0}{\longrightarrow} y$ P(y=0 | x=0) = 1-f; P(y=0 | x=1) = f;P(y=1 | x=0) = f; P(y=1 | x=1) = 1-f.assume input distribution $\mathcal{P}_X = \{1 - p, p\}$ $I(x; \lambda) = H^{5}(\lambda) - H^{5}(\lambda) + H^{5}(\lambda) +$ I(X;Y)max⁸ I(X; Y) over P (> max⁸ H₂(q)over p 0.4 0.3 $(+1_2(q)) \leq 1$, = 1 if $q = \frac{1}{2}$ 0.2 0.1 =) we need p(1-f)+(1-p)f = 1/2 = 1/2 0 0.25 0.5 0.75 0 p_1 $B_{SC} = 1 - H_2(f)$ for $P_x^* = \{\frac{1}{2}, \frac{1}{2}\}$ 20 =0 if f= 1/2

the noisy typewriter

Noisy typewriter. $A_X = A_Y = \text{the 27 letters } \{A, B, \dots, Z, -\}$. The letters are arranged in a circle, and when the typist attempts to type B, what comes out is either A, B or C, with probability $\frac{1}{3}$ each; when the input is C, the output is B, C or D; and so forth, with the final letter '-' adjacent to the first letter A.

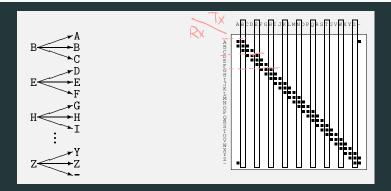


capacity of noisy typewriter

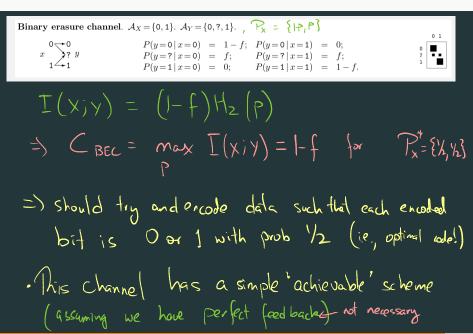
coding with noisy typewriter

Idea - 'Use every 3rd letter' $, 2 \rightarrow), 3 \rightarrow 6, \dots, 9 \rightarrow 7$ ensoler 1 -> A decoder (_, A, B) -> $(c, b, E) \longrightarrow 2$ No error! per channel use sends 9 symbols $(x, y, z) \longrightarrow 9$ Syndrome decoding

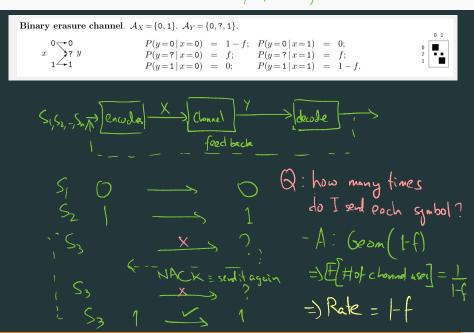
another view of the noisy typewriter



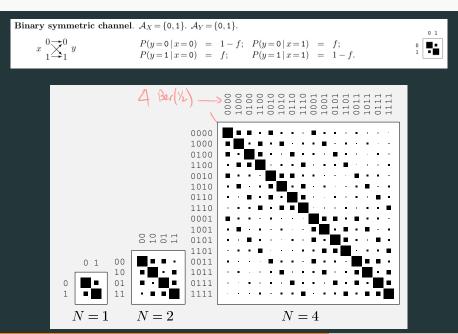
example: the erasure channel



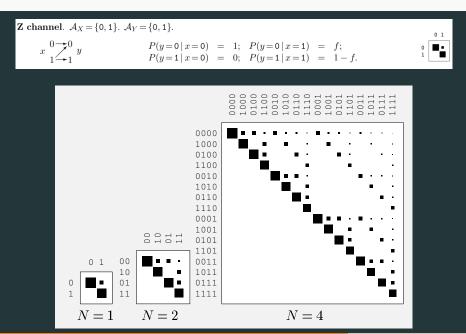
erasure channel capacity with perfect feed back



expanded channel for the BSC



expanded channel for the Z-channel



lossless compression via typical set encoding

typical set

iid source produces $X^N = (X_1 X_2 \dots X_N)$; each $X_i \in \mathcal{X}$ has entropy H(X)then X^N is very likely to be one of $\approx 2^{NH(X)}$ typical strings, all of which have probability $\approx 2^{NH(X)}$

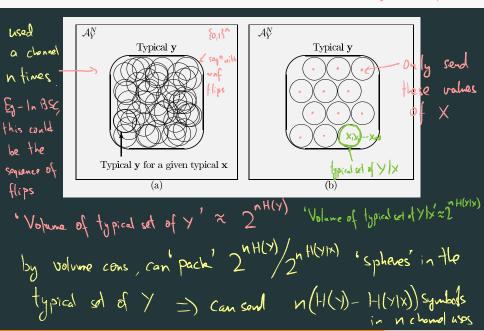
Eq - If X are (1/2)

$$(X_1X_2...X_{100}) \in (All sequences $0,13^{100} with between $40 a.d $60'1s)$$

with prob >1-8

much smaller than 20,15

typical set and non-confusable subset



(see ch 9 of Mackey)

typical set and non-confusable subset

This is the first example of the probabilistic method '

block codes, encoding, decoding

block code

for channel Q with input A_X , an (N, K)-block code is a list of $S = 2^K$ codewords $\{x^{(1)}, x^{(2)}, \ldots, x^{(2^K)}\}$ with $x^{(i)} \in A_X^N$ (i.e., of length N)

encoder

– using (N, K)-block code, can encode signal $s \in \{1, 2, 3, \dots, 2^K\}$ as x(s)

- the rate of the code is R = N/K bits per channel use

decoder

- mapping from each length-N string $y \in \mathcal{A}_Y^N$ of channel outputs to a codeword label $\hat{s} \in \{\varphi, 1, 2, 3, \dots, 2^K\}$ as x(s)- φ indicates failure

block codes and capacity

block code

for channel Q with input A_X , an (N, K)-block code is a list of $S = 2^K$ codewords $\{x^{(1)}, x^{(2)}, \ldots, x^{(2^K)}\}$ with $x^{(i)} \in \mathcal{A}_X^N$ (i.e., of length N) – the rate of the code is R = N/K bits per channel use

Shannon's channel coding theorem

For any $\epsilon > 0$ and R < C, for large enough N, there exists a block code of length N and rate $\geq R$ such that probability of block error is $< \epsilon$.

intuition behind proof

