stream codes (Mackay chapter 6)
problems with Huffman codes
changing ensembles
Huffman assumes ibid, real world data is non-iid
the extra bit: we know Huffman gives $H(X) \leq \mathbb{E}\left[L_{C}(X)\right] \leq H(X)+1$

a	0.001	00000	If one common + many uncounom
b	0.001	00001	Symbols, the + I bit is very bod
c	0.990	1	
d	0.001	00010	$\mathbb{E}[$ length $]=1.034$
e 0.001	00011	$H(X)=0.114$	
f	0.001	0100	$\mathbb{E}[L] / H(X)=9$
g	0.001	0101	
h	0.001	0110	
i	0.001	0111	
j	0.001	0010	
k	0.001	0011	

the guessing game
$\begin{array}{llllllll}14 & 1 & 11 & 1 & 1 & 1 & 1\end{array}$ MAJORITY OF PEOPLE -

$$
\begin{aligned}
& 260 \cup R 1 \\
& 20 \sim I E N \text { - HATE MATH }
\end{aligned}
$$

- iid Source, known distr - Opt code is Huff men
- id source, un known distr" - mood to loosn dist" (inference)
- non ied source, known distr" - separate probabilistic nodel easy to loon from encoding/learning/comas... (gog. Crithmetic coding)
hard to torn
- non rid source, unknown distr" - "agnostic" setting
- combine modeling+ task
- universal odes, on tine learning, 'adversarial' methods, etc.
two approaches to stream coding (for compaisor-see Mackay)
(known nadel, non iid)
Aviftrmetic Coding - needs to know nostel

$$
\begin{aligned}
& \text { (diva, ppz) } L(D) \leqslant H(D)+2 \text { bits }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (9389) } \\
& \lim _{D \rightarrow \infty} L(D) \approx H(D) \text { withont knesing model }
\end{aligned}
$$

arithmetic coding
idea - 'represeht every database as a single real number'
$D \equiv$ ' to be or to ber' $\xrightarrow{A C} 0.3141592652$ $\{$ decade \ldots i

$$
\begin{aligned}
& \text { If } D=X_{1} X_{2} \ldots X_{n} \text { 四 } \\
& \text { Need }-P_{t} \equiv \frac{\mathbb{P}\left[X_{t}=x^{{ }_{6} \in x} \mid X_{1}, X_{2}, \ldots, X_{t-1}\right]}{\text { Probabilstic mode } \mid} \\
& \text { Ey - Morkovian nodel - } P_{t} \equiv \mathbb{P}\left[X_{t}=x \mid X_{t-1}\right] \text { (bigram) }
\end{aligned}
$$

$$
\begin{array}{ccc}
P_{1} \mathbb{P}\left[x_{1} \mid \phi\right] & \mathbb{P}\left[x_{2} \mid x_{1}=t\right] & \mathbb{P}\left[x_{3} \mid \kappa_{0}\right] \\
0.3 & 0.14 & 0.159
\end{array}
$$

arithmetic coding
for decoding - de coder knows the model

- runs the encoder 'in reverse'

application of arithmetic coding beyond compression

https: //www.youtube.com/watch?v=nr3s4613DX8

Formal gucrontee $\lim _{n \rightarrow a} \frac{L\left(D_{n}\right)}{n} \approx H(x)$
till now - Chs 1,2 (intro) $+\operatorname{Ch} 4,5,6$ (source coding)
Plan

- today - information theory for dependant r.v. (C hB)
- Channel coding (Ch)
- next class - Shannon's chonnel codingthm (Ch 10)

In 2 classes - Intro to Bayesian stats (C hZ of Mackay, Ch 1 of Bishop)

