# stream codes (Mackay chapter 6)

#### problems with Huffman codes

#### changing ensembles

the extra bit: we know Huffman gives  $H(X) \leq \mathbb{E}[L_C(X)] \leq H(X) + 1$ 

| a 0.001<br>b 0.001<br>c 0.990<br>d 0.001                       | 00000<br>00001<br>1<br>00010                 | lf one common t mony uncommo<br>Symbols, the +1 bit is very bud                                     |
|----------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------|
| f 0.001<br>g 0.001<br>h 0.001<br>i 0.001<br>j 0.001<br>k 0.001 | 0100<br>0101<br>0110<br>0111<br>0010<br>0011 | $egin{aligned} \mathcal{H}(X) &= 0.114 \ \mathbb{E}[\mathcal{L}]/\mathcal{H}(X) &= 9 \end{aligned}$ |

#### the guessing game



# $\frac{FOURIN TEN - HATE MATH}{R}$

### how to model data sources

two approaches to stream coding (for comparison - see Mackey)  
(known model, non ind)  
Avifhmetic Coding - needs to know model  
(dive, PP3) 
$$L(D) \leq H(D) + 2$$
 bits  
 $Dictionary (oding (L2W))$  ("universal" i.e.  
(gsip)  
(in  $L(D) \approx H(D)$  without knowing model  
 $D \rightarrow k$ 

#### arithmetic coding

idea - i vepresent every database as a sigle real number' $<math>D = i to be an to be <math>\mathbb{Z} = AC + 0.3141592652$ i decade - - i

$$\frac{H}{D} = X_{1}X_{2} \dots X_{n} \overline{\mathbb{Z}}_{1}$$

$$\frac{K}{E} \sum_{i=1}^{n} \frac{P[X_{i} = \mathcal{X}_{1}X_{2}, \dots, X_{t-1}]}{Probabilistic model}$$

$$\frac{F_{i}}{E} = \frac{P[X_{i} = \mathcal{X}_{1}X_{2}, \dots, X_{t-1}]}{Probabilistic model}$$

#### arithmetic coding

to\_be\_o



## arithmetic coding

#### application of arithmetic coding beyond compression



https://www.youtube.com/watch?v=nr3s4613DX8

# Lempel-Ziv-Welch coding sauce date - 1011010100010

| source substrings      | $\lambda$ | 1    | 0     | 11      | 01      | 010      | 00       | 10             |
|------------------------|-----------|------|-------|---------|---------|----------|----------|----------------|
| s(n)                   | 0         | 1    | 2     | 3       | 4       | 5        | 6        | 7              |
| $s(n)_{\text{binary}}$ | 000       | 001  | 010   | 011     | 100     | 101      | 110      | 111            |
| (pointer, bit)         |           | (,1) | (0,0) | (01, 1) | (10, 1) | (100, 0) | (010, 0) | 111<br>(001,0) |



$$\approx \sqrt{n}$$
 logn bits

L(Dn  $\approx H(x)$ tormal guarantee