15p=0.1, N=1000 Mackay's bent coin lottery: solution a_1 then this is ≈ 0.1 Suggested soln - buy all tix with $\leq N(P + 10 \sqrt{\frac{P(1+P)}{N}})$ ones How many fix did we buy? Let n = N(P+10, The) $\approx 2^{NH_{2}\left(\frac{n}{N}\right)}_{H_{2}\left(0.2\right)}$ $= 2^{NH_{2}\left(p+\frac{10JPHP}{\sqrt{N}}\right)}$ $\approx 2^{NH_2(P)} (\alpha N \to \alpha)$ (last term in Summation >> Sum of all other terms)

(lossy) source coding theorem for binary sources

given
$$X^N = (X_1 X_2 \dots X_N)$$
, where each $X_i \sim \text{Bernoulli}(p)$

 δ -lossy compression

$$L = \phi(X^N)$$
 defined only for $X^N \in S_\delta$ s.t. $\mathbb{P}[S_\delta] \ge 1 - \delta$

(lossy) source coding theorem for binary sources

given
$$X^N = (X_1 X_2 \dots X_N)$$
, where each $X_i \sim \text{Bernoulli}(p)$

 δ -lossy compression

$$L = \phi(X^N)$$
 defined only for $X^N \in \mathcal{S}_{\delta}$ s.t. $\mathbb{P}[\mathcal{S}_{\delta}] \geq 1 - \delta$

- δ -sufficient subset S_{δ} : smallest subset of $\{0,1\}^N$ s.t. $\mathbb{P}[S_{\delta}] \ge 1 - \delta$

- essential information content in X^N : $H_{\delta}(X^N) \triangleq \log_2 |S_{\delta}|$

(lossy) source coding theorem for binary sources

given
$$X^N = (X_1 X_2 \dots X_N)$$
, where each $X_i \sim \text{Bernoulli}(p)$

 δ -lossy compression

$$L=\phi(X^N)$$
 defined only for $X^N\in\mathcal{S}_\delta$ s.t. $\mathbb{P}[\mathcal{S}_\delta]\geq 1-\delta$

- δ -sufficient subset S_{δ} : smallest subset of $\{0,1\}^N$ s.t. $\mathbb{P}[S_{\delta}] \ge 1-\delta$
- essential information content in X^N : $H_{\delta}(X^N) \triangleq \log_2 |S_{\delta}| \approx N \operatorname{H}(P + \operatorname{Lef})$

Shannon's source coding theorem (lossy version)

if X has entropy H(X), then for any $\epsilon > 0$ and $0 < \delta < 1$, there exists N_0 s.t. for all $N > N_0$, we have

 $\left|\frac{H_{\delta}(X^{N})}{N} - H(X)\right| \leq \epsilon$

(lossy) source coding for binary sources: intuition

(lossy) source coding for binary sources: intuition

- lower bounds

lossless source coding

from lossy to lossless compression

given
$$X^N = (X_1 X_2 \dots X_N)$$
, where each $X_i \sim \text{Bernoulli}(p)$
 $S_S = \sum_{i=1}^{D} [D_i, D_i, \dots, D_{1s_i1}], [S_i] \approx 2^{NH(x)}$
Lossy scheme : - use $\log_2 |S_i| = NH(x)$ bits to encode
each $D_i \in S_s$
 $-\frac{1f_i D_j \notin S_s}{wp \geq 1-S_i}$, send and it may symbol
 $wp \geq 1-S_i$, can decode D_i using $NH(x)$ bits

Lossless scheme - use 'prefix' O to indicate DESS, I to indicate
- code:
$$\widehat{L}(D) = O \widehat{L}$$
 if $D \in S_{\delta}$
1 \widehat{D} if $D \notin S_{\delta}$
N bits

from lossy to lossless compression

given $X^N = (X_1 X_2 \dots X_N)$, where each $X_i \sim \text{Bernoulli}(p)$

Shannon's source coding theorem

if X has entropy H(X), then for any $\epsilon > 0$ and $0 < \delta < 1$, there exists N_0 s.t. for all $N > N_0$, we have a lossless code $L = \phi(X^N)$ s.t. $\left|\frac{\mathbb{E}[L]}{N} - H(X)\right| \le \epsilon$

lossless compression via typical set encoding

iid source produces $X^N = (X_1 X_2 \dots X_n)$; each $X_i \in \mathcal{X}$ has entropy H(X)then X^N is very likely to be one of $\approx 2^{NH(X)}$ typical strings, (typical triangle of $\approx 2^{NH(X)}$ all of which have probability $\approx 2^{NH(X)}$ (asymptotic equipartition) Typical sequence Prof = 1% Size) N (log2 |x| - H(x)) All equally (Prob = 991. likely 20 P2 $S_{i2e} = 2^{NH(x)} \Longrightarrow H(x^{N}) = NH(x)$

visualizing the typical set

visualizing 'asymptotic equipartition'

practical source coding solutions

symbol codes
$$X_1 X_2 \dots X_n \quad o \quad \phi(X_1) \phi(X_2) \dots \phi(X_n)$$

stream codes

$$X_1X_2\ldots X_n \quad \to \quad \phi(X_1)\phi(X_2|X_1)\phi(X_3|X_1X_2)\ldots\phi(X_n|X_1X_2\ldots X_{n-1})$$

Reching Assignment symbol codes (Mackay chapter 5)

symbol codes

expected length of symbol code

let $X \sim \{p(x)\}_{x \in \mathcal{X}}$, and consider code $C(\cdot)$, and let $\ell(x) = |C(x)|$ the expected length of C is $\mathbb{E}[L(C, X)] = \sum_{x} p(x)\ell(x)$

what we want from symbol code C:

- unique decodability: $\forall x_1 x_2 \dots x_n \neq y_1 y_2 \dots y_n$, we have $C(x_1)C(x_2) \dots C(x_n) \neq C(y_1)C(y_2) \dots C(y_n)$
- easy to decode
- small $\mathbb{E}[L(C,X)]$

types of sym	H(x) = 1.75								
consider source producing $X \sim \{a, b, c, d\}$ with prob $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$									
Symbolz	into content (h(2)	(one-hot e Codel	rcadiy) L(2)	(binge	codiy) ((2)				
		1000	4	୦୭					
Р		0 00	4						
		0100	4						
9		0001	4						
	4(x)=1.75		E[R(x]]=4						

prefix co	odes (variable la	myth, greedy	encoding	(de coding)	
Symbole	-mfo content (h(x)	prefix-free Code:3	L(2)	Uniquely Code 4	tecodoble (2)
			1	Ö	1
Ь			2		2
			3	01)	3
д			3		3
	H(x)=1.75	E[elsi (all code	()=]-75 (UD (P		1.75) {ixed lengt

the limits of unique decodability

Kraft-McMillan inequality (Conservation laws) for any $C \equiv$ uniquely decodable binary code over \mathcal{X} , with $\ell(x) = |C(x)|$ fraction of leaf nodes in partition 2c moreover, for any $\{\ell(x)\}$ satisfying this, we can find a prefix code Every prefix free code = subset of hales in a