
Mackay’s bent coin lottery: solution



(lossy) source coding theorem for binary sources

given X
N
= (X1X2 . . .XN), where each Xi ⇠Bernoulli(p)

�-lossy compression

L = �(XN
) defined only for X

N 2 S� s.t. P[S�] � 1� �

- �-su�cient subset S�: smallest subset of {0, 1}N s.t. P[S�] � 1� �

- essential information content in X
N
: H�(X

N
) , log2 |S�|

Shannon’s source coding theorem (lossy version)

if X has entropy H(X ), then for any ✏ > 0 and 0 < � < 1, there exists N0

s.t. for all N > N0, we have����
H�(X

N
)

N
� H(X )

����  ✏
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(lossy) source coding for binary sources: intuition
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lossless source coding



from lossy to lossless compression

given X
N
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Shannon’s source coding theorem

if X has entropy H(X ), then for any ✏ > 0 and 0 < � < 1, there exists N0

s.t. for all N > N0, we have a lossless code L = �(XN
) s.t.����
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N
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lossless compression via typical set encoding

typical set

iid source produces X
N
= (X1X2 . . .Xn); each Xi 2 X has entropy H(X )

then X
N
is very likely to be one of ⇡ 2

NH(X )
typical strings,

all of which have probability ⇡ 2
NH(X )



visualizing the typical set



visualizing ‘asymptotic equipartition’



practical source coding solutions

symbol codes

X1X2 . . .Xn ! �(X1)�(X2) . . .�(Xn)

stream codes

X1X2 . . .Xn ! �(X1)�(X2|X1)�(X3|X1X2) . . .�(Xn|X1X2 . . .Xn�1)



symbol codes (Mackay chapter 5)



symbol codes

expected length of symbol code

let X ⇠ {p(x)}x2X , and consider code C (·), and let `(x) = |C (x)|
the expected length of C is E[L(C ,X )] =

P
x
p(x)`(x)

what we want from symbol code C :

– unique decodability: 8 x1x2 . . . xn 6= y1y2 . . . yn, we have

C (x1)C (x2) . . .C (xn) 6= C (y1)C (y2) . . .C (yn)

– easy to decode

– small E[L(C ,X )]



types of symbol codes

consider source producing X ⇠ {a, b, c , d} with prob
�
1

2
, 1
4
, 1
8
, 1
8

 



prefix codes



the limits of unique decodability

Kraft-McMillan inequality

for any C ⌘ uniquely decodable binary code over X , with `(x) = |C (x)|
X

x2X
2
�`(x)  1

moreover, for any {`(x)} satisfying this, we can find a prefix code


