ORIE 4742 - Info Theory and Bayesian ML

Lecture 3: Measuring Information

February 15, 2021

Sid Banerjee, ORIE, Cornell

Mackay's weighing puzzle

You are given 12 balls, all equal in weight except for one that is either heavier or lighter. Design a strategy to determine which is the odd ball and whether it is heavier or lighter,

in as few uses of the balance as possible.

how much 'information' does a random variable have?

reading assignment: chapter 4 of Mackay

quantifying information content

measuring information

consider (discrete) rv X taking values $\mathcal{X} = \{a_1, a_2, \dots, a_k\}$, with probability mass function $\mathbb{P}[X = a_i] = p_i \forall i, \sum_{i=1}^k p_i = 1$

Shannon's entropy function

• outcome
$$X = a_i$$
 has information content p_i large \Rightarrow $h(a_i)$ issuell
 $h(a_i) = \log_2\left(\frac{1}{p_i}\right) \leftarrow f \circ f \circ_i$ but does not depend on
• random variable X has entropy
 $H(X) = \mathbb{E}[h(X)] = \sum_{i=1}^k p_i \log_2\left(\frac{1}{p_i}\right)$

entropy: basic properties

Shannon's entropy function

- outcome $X = a_i$ has information content: $h(a_i) = \log_2 \left(\frac{1}{p_i}\right)$
- random variable X has entropy: $H(X) = \mathbb{E}[h(X)] = \sum_{i=1}^{k} p_i \log_2\left(\frac{1}{p_i}\right)$
- only depends on distribution of X (i.e., $H(X) = H(p_1, p_2, ..., p_k)$)
- $H(X) \ge 0 \text{ for all } X \quad \left(\begin{array}{c} & \langle \cdot \rangle \\ & \langle \cdot \rangle$
- if $X \perp Y$, then H(X, Y) = H(X) + H(Y)where joint entropy $H(X, Y) \triangleq \sum_{(x,y)} p(x,y) \log_2 1/p(x,y)$ independent $= \sum_{(x,y)} p(x) p(y) \left(-\log_2 p(x) - \log_2 p(y) \right)$ $\downarrow \downarrow$: not interpret ($= \sum_{(x,y)} p(x) p(y) \left(-\log_2 p(x) - \log_2 p(y) \right)$

$$=\left(\sum_{z}-P(z)\log(P(z))\right)+\left(\sum_{y}P(y)\log(P(z))\right)$$

entropy: basic properties

Shannon's entropy function

- outcome $\overline{X} = a_i$ has information content: $h(a_i) = \log_2\left(\frac{1}{p_i}\right)$
- random variable X has entropy: $H(X) = \mathbb{E}[h(X)] = \sum_{i=1}^{k} p_i \log_2 \left(\frac{1}{p_i}\right)$

- if $X \sim$ uniform on \mathcal{X} , then $H(X) = \log_2 |\mathcal{X}|$; else, $H(X) \leq \log_2 |\mathcal{X}|$

$$\begin{array}{l} \bigcirc & -\sum\limits_{i=1}^{|X|} P_i \log P_i &= -\sum\limits_{i=1}^{|X|} \frac{1}{|X|} \log \frac{1}{|X|} &= \log |X| \\ \bigcirc & \forall \{P_i\} \text{ s.t. } P_i \geqslant 0, \sum\limits_{i=1}^{|X|} P_i &= 1, \max - \sum\limits_{i=1}^{|X|} P_i \log P_i &\leq \log_2 |X| \\ \frac{d_{12}}{d_{12}} &= H(X) = \mathbb{E} \left[h(X) \right] \quad \text{where} \quad h(x) = -\log P(x) \end{array}$$

 $\Rightarrow \mathbb{E}\left[\log(g(x))\right] \leq \log(\mathbb{E}[g(x)])$ $\Rightarrow \mathbb{E}[h(x)] = \mathbb{E}\left[\log_2(\frac{1}{p(x)})\right]$ $\leq \log \left[E \left[\frac{\gamma_{P(x)}}{\sum_{i=1}^{\infty} P_i \cdot (\gamma_i)} - 1 \right] \right]$ $= \log_2|X|$

the game of 'sixty three

guess number $X \in \{0, 1, 2, \dots, 62, 63\}$ $[H \circ f questions = 6 \gg H(x) (H(x) = 6 if x \sim u_{ni}[\{0, ..., n\}]$ Q1 - Is X even? <u>Yes</u> Is X/2 odd a even? --<u>No</u> Is X+1/2 odd or even? --

designing questions to maximize information gain

the game of 'submarine'

player 1 hides a submarine in one square of an 8×8 grid player 2 shoots at one square per round

$$\frac{12345}{|X||} \cdot \chi = \left\{ (X,Y); X \in \{1, \dots, 8\} \right\}$$

$$\frac{12345}{|X||} \cdot \chi = \left\{ (X,Y); X \in \{1, \dots, 8\} \right\}$$

$$\frac{12345}{|X||} \cdot \chi = \left\{ (X,Y); X \in \{1, \dots, 8\} \right\}$$

$$\frac{12345}{|X||} \cdot \chi = \left\{ (X,Y); X \in \{1, \dots, 8\} \right\}$$

$$\frac{12345}{|X||} \cdot \chi = \left\{ (X,Y); X \in \{1, \dots, 8\} \right\}$$

$$\frac{12345}{|X||} \cdot \chi = \left\{ (X,Y); X \in \{1, \dots, 8\} \right\}$$

$$\frac{12345}{|X||} \cdot \chi = \left\{ (X,Y); X \in \{1, \dots, 8\} \right\}$$

$$\frac{12345}{|X||} \cdot \chi = \left\{ (X,Y); X \in \{1, \dots, 8\} \right\}$$

$$\frac{12345}{|X||} \cdot \chi = \left\{ (X,Y); X \in \{1, \dots, 8\} \right\}$$

$$\frac{12345}{|X||} \cdot \chi = \left\{ (X,Y); X \in \{1, \dots, 8\} \right\}$$

$$\frac{12345}{|X||} \cdot \chi = \left\{ (X,Y); X \in \{1, \dots, 8\} \right\}$$

$$\frac{12345}{|X||} \cdot \chi = \left\{ (X,Y); X \in \{1, \dots, 8\} \right\}$$

$$\frac{12345}{|X||} \cdot \chi = \left\{ (X,Y); X \in \{1, \dots, 8\} \right\}$$

$$\frac{12345}{|X||} \cdot \chi = \left\{ (X,Y); X \in \{1, \dots, 8\} \right\}$$

$$\frac{12345}{|X||} \cdot \chi = \left\{ (X,Y); X \in \{1, \dots, 8\} \right\}$$

$$\frac{12345}{|X||} \cdot \chi = \left\{ (X,Y); X \in \{1, \dots, 8\} \right\}$$

$$\frac{12345}{|X||} \cdot \chi = \left\{ (X,Y); X \in \{1, \dots, 8\} \right\}$$

$$\frac{12345}{|X||} \cdot \chi = \left\{ (X,Y); X \in \{1, \dots, 8\} \right\}$$

$$\frac{12345}{|X||} \cdot \chi = \left\{ (X,Y); X \in \{1, \dots, 8\} \right\}$$

$$-Q_{1} \equiv l_{s} (x, y) = (1, 1) ? \qquad h(Y_{1}) = -\frac{1}{64} l_{g_{2}} \frac{1}{64} - \frac{63}{64} l_{g_{4}} \frac{63}{64}$$

$$\cdot |f Y_{1} = \sqrt{0}, Q_{2} \equiv l_{s} (x, y) = (1, 2) ? \qquad h(Y_{2}) = -\frac{1}{63} l_{g_{2}} \frac{1}{63} - \frac{62}{63} l_{g_{4}} \frac{63}{63}$$

designing questions to maximize information gain

the game of 'submarine'

player 1 hides a submarine in one square of an 8×8 grid player 2 shoots at one square per round

Mackay's weighing puzzle

You are given 12 balls, all equal in weight except for one that is either heavier or lighter. Design a strategy to determine which is the odd ball

and whether it is heavier or lighter,

in as few uses of the balance as possible.

information acquisition in the weighing puzzle

What is the best you can do 1
$$X = the outcome$$

- $X = set of outcomes = {(1,h),(1,l),(2,h),(2,l),...(0,l)}$
=) $|X| = 24 \Rightarrow H(X) = \log_3 24 \text{ trits} = \log_2 24$
bits
- Consider each weighing - Bout comes - LH, RH, E
max info per weighing = $\log_3 3 = 1 \text{ inf trith}$
(or $\log_2 3$ bits)
=) Need k questions s.t. $k \log_3 2 > \log_2 24$
=) $k > 3$

information acquisition in the weighing puzzle

weighing game: an optimal solution

binary entropy function

if X Bernoulli(p), then $H(X) \triangleq H_2(p) = -p \log_2(p) - (1-p) \log_2(1-p)$

- (useful formula) for any $k, N \in \mathbb{N}$, $k \leq N$:

conditional entropy

suppose $X \sim \{p_1, p_2, p_3, p_4\}$, and let $Y = \mathbb{1}_{[X \in \{a_1, a_2\}]}$; then we have $H(X) = H(Y) + (p_1 + p_2)H_2\left(\frac{p_1}{p_1 + p_2}\right) + (p_3 + p_4)H_2\left(\frac{p_3}{p_3 + p_4}\right)$

conditional entropy

suppose $X \sim \{p_1, p_2, p_3, p_4\}$, and let $Y = \mathbb{1}_{[X \in \{a_1, a_2\}]}$; then we have $H(X) = H(Y) + (p_1 + p_2)H_2\left(\frac{p_1}{p_1 + p_2}\right) + (p_3 + p_4)H_2\left(\frac{p_3}{p_3 + p_4}\right)$

conditional entropy

for any rvs X, Y: $H(X|Y) = \sum_{y \in \mathcal{Y}} p(y) H(X|Y = y)$ = $\sum_{y \in \mathcal{Y}} p(y) \sum_{x \in \mathcal{X}} p(x|y) \log_2(1/p(x|y))$

the chain rule

the chain rule (information content) for any rvs X, Y and realizations x, y: h(x, y) = h(x) + h(y|x) = h(y) + h(x)

the chain rule

the chain rule (entropy)

for any rvs X, Y:

H(X, Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)

blank

blank

blank