ORIE 4742 - Info Theory and Bayesian ML

Lecture 3: Measuring Information

February 15, 2021
Sid Banerjee, ORIE, Cornell

Mackay's weighing puzzle

The weighing problem

You are given 12 balls, all equal in weight except for one that is either heavier or lighter.
Design a strategy to determine
which is the odd ball
and whether it is heavier or lighter,
in as few uses of the balance as possible.
how much 'information' does a random variable have?
2 state lotteries S_{1}, S_{2}, winning number is $X_{1}=1, X_{2}=1$
Suppose $S_{1} \equiv$ Vermont,$S_{2} \equiv$ Texas $\left(N_{1}=\#\right.$ of people in biter $\left.1 \ll N_{2}\right)$

- If we do not know X_{1}, X_{2}, then is $X_{1}=1$ or $X_{2}=1$ move Surprising?
- Is $X_{1}=1$ move loss surprising than $x_{1}=12793$
axioms of 'information' - info exists only if uncertainty
- The exact information does not nat lev (only the 'surprise' matters)
- more 'surprising' roo. have move info
(Shannon'48)
Idea - Information of av 三 amount of uncertainty resolved by knowing the r. O.

reading assignment: chapter 4 of Mackay
quantifying information content
measuring information
consider (discrete) $r v \mathcal{X}$ taking values $\mathcal{X}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, with probability mass function $\mathbb{P}\left[X=a_{i}\right]=p_{i} \forall i, \sum_{i=1}^{k} p_{i}=\overline{1}$

Shannon's entropy function

- outcome $X=a_{i}$ has information content
$h\left(a_{i}\right)=\log _{2}\left(\frac{1}{p_{i}}\right) \longleftarrow$ fo of a_{i} bat does most depend on
- random variable X has entropy

$$
H(X)=\mathbb{E}[h(X)]=\sum_{i=1}^{k} p_{i} \log _{2}\left(\frac{1}{p_{i}}\right)
$$

$\frac{x}{a_{1}}$,	$\frac{h(x)}{}$	$\log _{2}\left(1 / p_{1}\right)$
a_{2}		$\log _{2}\left(1 / p_{2}\right)$
\vdots	\vdots	P_{1}
a_{k}		$\log _{2}\left(1 / P_{k}\right)$

entropy: basic properties

Shannon's entropy function

- outcome $X=a_{i}$ has information content: $\quad h\left(a_{i}\right)=\log _{2}\left(\frac{1}{p_{i}}\right)$
- random variable X has entropy: $H(X)=\mathbb{E}[h(X)]=\sum_{i=1}^{k} p_{i} \log _{2}\left(\frac{1}{p_{i}}\right)$
- only depends on distribution of X (i.e., $\left.H(X)=H\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)$
- $H(X) \geq 0$ for all $X \quad\left(\because \log \left(1 / p_{i}\right) \geqslant 0 \forall i\right)$
- if $X \underset{ }{\Perp} Y$, then $H(X, Y)=H(X)+H(Y)$ where joint entropy $H(X, Y) \triangleq \sum_{(x, y)} p(x, y) \log _{2} 1 / p(x, y)$
indepen don

$$
\left.=\sum_{(y y)} p(a) P_{y}\right)\left(-\log _{2}(t)-\log _{2} P\left(y_{y}\right)\right)
$$

IX: notindep

$$
=\left(\sum_{x}-p(x) \log p(x)\right)+\left(\sum_{y}-p(y) \log p(y)\right)
$$

entropy: basic properties

Shannon's entropy function

- outcome $X=a_{i}$ has information content: $\quad h\left(a_{i}\right)=\log _{2}\left(\frac{1}{p_{i}}\right)$
- random variable X has entropy: $H(X)=\mathbb{E}[h(X)]=\sum_{i=1}^{k} p_{i} \log _{2}\left(\frac{1}{p_{i}}\right)$
- if $X \sim$ uniform on \mathcal{X}, then $\frac{H(X)=\log _{2}|\mathcal{X}| \text {; else, } \frac{H(X) \leq \log _{2}|\mathcal{X}|}{\text { () }} \text { () }}{\text { (1) }}$
(1) - $\sum_{i=1}^{|x|} p_{i} \log p_{i}=-\sum_{i=1}^{|x|} \frac{1}{|x|} \log \frac{1}{|x|}=\log |x|$
(2) $\forall\left\{P_{i}\right\}$ s.t. $p_{i} \geqslant 0, \sum_{i=1}^{M \mid 1} p_{i}=1$, max $-\sum_{i=1}^{m \mid} p_{i} \log p_{i} \leqslant \log _{2}|x|$

Ida - $H(x)=\mathbb{E}[h(x)]$ where $h(x)=-\lg p(x)$

$$
\begin{aligned}
& \cdot \mathbb{E}[h(x)]=\mathbb{E}\left[\log _{2}(1 / p(x))\right] \\
& \cdot\left(\operatorname{Jen} \operatorname{sen}^{\prime} ' s\right) \mathbb{E}[f(x)] \geqslant f(\mathbb{E}[x]) \\
& \leqslant f(\mathbb{E}[x]) \\
& \Rightarrow \mathbb{E}[\log (g(x))] \leqslant \log _{2}(\mathbb{E}[g(x)]) \\
& \Rightarrow \mathbb{E}[h(x)]=\mathbb{E}\left[\log _{2}(1 / p(x))\right] \\
& \leqslant \log _{2}[\mathbb{E}[\underbrace{[1 / p(x)]}] \\
&= \log _{2}|x|=1
\end{aligned}
$$

designing questions to maximize information gain (heuristic)
the game of 'sixty three'
guess number $X \in\{0,1,2, \ldots, 62,63\}$
Q: how many (an dwhat) yet No questions should you ask?
 $x \sim U_{i n}\{\{0, \ldots, 6\}$
Q1 - Is X even? Yes is $X / 2$ ode a even?
No is $x+1 / 2$ odd ar even?
Claim - Anon' of entropy in each answer $=1$ bit
designing questions to maximize information gain
the game of 'submarine'
player 1 hides a submarine in one square of an 8×8 grid
player 2 shoots at one square per round

$$
\begin{aligned}
& x=\{(x, y) ; x \in\{1, \ldots, 8\}, y \in\{1, \ldots, 8\}\} \\
& \text { If } x \sim \operatorname{Unif}(x) \text {, then } H(x)=6\binom{3+3)}{=1} \\
& Q_{u e s t i o n ~} \equiv\left(Q_{x}, Q_{y}\right)
\end{aligned}
$$

$$
\begin{aligned}
& Q_{1} \equiv \text { is }(x, y)=(1,1) ? \quad h\left(y_{1}\right)=-\frac{1}{64} \log _{2} \frac{1}{64}-\frac{63}{64} \log \frac{63}{64} \\
& \text { If } y_{1}=N_{0}, Q_{2} \equiv \operatorname{ls}_{s}(x, y)=(1,2) ? \quad h\left(y_{2}\right)=-\frac{1}{63} \log _{2} \frac{1}{63}-\frac{62}{63} \log \frac{62}{63}
\end{aligned}
$$

designing questions to maximize information gain

```
the game of 'submarine'
player 1 hides a submarine in one square of an \(8 \times 8\) grid player 2 shoots at one square per round
```


Mackay's weighing puzzle

The weighing problem

You are given 12 balls, all equal in weight except for one that is either heavier or lighter.
Design a strategy to determine
which is the odd ball
and whether it is heavier or lighter,
in as few uses of the balance as possible.
information acquisition in the weighing puzzle
What is the best you can do? $X \equiv$ the outcome

$$
X \equiv \text { set of outcomes }=\{(1, h),(1, l),(2, h),(2, l) \ldots(1, l)\}
$$

$$
\Rightarrow|x|=24 \Rightarrow H(x)=\log _{3} 24 \text { twits }=\log _{2} 24
$$

- Consider each weighing - Bout comes - LH, RH, E max info per weighing $=\log _{3} 3=1$ in $^{\text {'trite' }}$

$$
\left(\text { or } \log _{2} 3 \text { bits }\right)
$$

\Rightarrow Need k questions st. $k \log _{2} 3 \geqslant \log _{2} 24$ $\Rightarrow 12 \geqslant 3$

weighing game: an optimal solution

binary entropy function

if X Bernoulli (p), then $H(X) \triangleq H_{2}(p)=-p \log _{2}(p)-(1-p) \log _{2}(1-p)$

- (useful formula) for any $k, N \in \mathbb{N}, k \leq N: \quad\binom{N}{k} \approx 2^{N H_{2}(k / N)}$

conditional entropy

suppose $X \sim\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$, and let $Y=\mathbb{1}_{\left[X \in\left\{a_{1}, a_{2}\right\}\right]}$; then we have

$$
H(X)=H(Y)+\left(p_{1}+p_{2}\right) H_{2}\left(\frac{p_{1}}{p_{1}+p_{2}}\right)+\left(p_{3}+p_{4}\right) H_{2}\left(\frac{p_{3}}{p_{3}+p_{4}}\right)
$$

conditional entropy

suppose $X \sim\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$, and let $Y=\mathbb{1}_{\left[X \in\left\{a_{1}, a_{2}\right\}\right]}$; then we have

$$
H(X)=H(Y)+\left(p_{1}+p_{2}\right) H_{2}\left(\frac{p_{1}}{p_{1}+p_{2}}\right)+\left(p_{3}+p_{4}\right) H_{2}\left(\frac{p_{3}}{p_{3}+p_{4}}\right)
$$

conditional entropy

for any rvs $X, Y: H(X \mid Y)=\sum_{y \in \mathcal{Y}} p(y) H(X \mid Y=y)$

$$
=\sum_{y \in \mathcal{Y}} p(y) \sum_{x \in \mathcal{X}} p(x \mid y) \log _{2}(1 / p(x \mid y))
$$

the chain rule

the chain rule (information content)
for any rvs X, Y and realizations x, y :

$$
h(x, y)=h(x)+h(y \mid x)=h(y)+h(x \mid y)
$$

the chain rule

the chain rule (entropy)
for any rvs X, Y :

$$
H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)
$$

