

ORIE 4742 - Info Theory and Bayesian ML

Chapter 11: Mixture Models

May 5, 2021
Sid Banerjee, ORIE, Cornell

Plan for rext fers classes

- More complex genenative nodels/decision problens
- latant variable models (miacture model)
- optimizing complex fas - simulted amnealing
- random walks
- guabient descent
- stochestice gecdies drucal
- fitting unkenown fus sith
$G P_{s}$ (Baysision opt")
- neunal networks
example: clustering points in \mathbb{R}^{2}

Note - No 'training data ($\left.\begin{array}{c}\text { no grows } \\ \text { thatch }\end{array}\right)$
Idea - ' K-means'

- pick $K=$ member of dusters $\left(E_{y}-K=2\right)$
- pick cluster centers μ_{1}, μ_{2}
- For. each point x_{n}, pick 'cluster membership' $\lambda_{n}=\left\{r_{11}, \ldots, r_{k}\right\}$ st. $\sum_{i=1}^{k} r_{n i}=1, r_{n i} \in\{0,1\}$
- $\frac{\text { Aim }}{N}$ - minimize 'distortion'

$$
\sum_{n=1}^{N} \sum_{k=1}^{K} r_{n k}\left\|x_{n}-\mu_{k}\right\|_{2}^{2}
$$

(ie, 'facility location')

approach 1: K-means

stait by 'guessing' μ_{1}, μ_{2}

approach 1: K-means

next
$2 \frac{\text { update cluster center } \mu_{k}}{}$ to minimize $\sum\left\|x_{n}-\mu_{k}\right\|_{2}^{2}$ for x_{n} st. $r_{\text {min }}=1$

approach 1: K-means

approach 1: K-means

(d)

approach 1: K-means

approach 1: K-means

il- Iteratively set $\left\{r_{n k}\right\}$ and $\left\{\mu_{n}\right\}$
supervised vs. unsupervised learning
Suppose we knew cluster labels ('supervised learning') - Can use 'standard' Bayesian ML classification models (Naive Bayes, Logistic regression, GP classfacatia)

The clustering problem - no cluster labels (unsupervised learning) - no examples of 'correct'
answers
latent variable generative models
exists, but is not in the data

'Common' latent variable
Eg - regression

the Gaussian mixture model

- data $D=\left\{X_{1}, X_{2} \ldots, X_{N}\right\} \in \mathbb{R}^{d}$ indicator vectors
- each point X_{n} has a latent cluster label in $\{1,2, \ldots, K\}$ denoted by $Z_{n} \in\{0,1\}^{K}, \sum_{k=1}^{K} z_{n, i}=1$
(1-of- K encoding)
- latent variable: $Z_{n} \sim \operatorname{Mult}\left(\pi_{1}, \pi_{2}, \ldots, \pi_{K}\right)$ where $\sum_{i=1}^{K} \pi_{i}=1$ data: if latent cluster is $k \in[K]$, then $X_{n} \sim \mathcal{N}\left(\mu_{k}, \sum_{k}\right) \mathbb{\sum}$ ie. $Z_{n}=\ell_{i}$
- joint likelihood:

$$
p(X, Z \mid \mu, \Sigma, \pi)=\prod_{n=0}^{N-1} \prod_{k=0}^{K-1}\left[\pi_{k} \mathcal{N}\left(X_{n} \mid \mu_{k}, \Sigma_{k}\right)\right]^{z_{n, k}}(2 \pi)^{-d / 2} \varepsilon_{k}^{-1 / 2} e^{-(x, \mu)^{\top} \Sigma_{k}^{-1}(x-\mu)}
$$

- log-likelihood of data:

$$
\log p(X \mid \mu, \Sigma, \pi)=\sum_{n=0}^{N-1} \underbrace{\log \left[\sum_{k=0}^{K-1} \pi_{k} \mathcal{N}\left(X_{n} \mid \mu_{k}, \Sigma_{k}\right)\right]}_{\text {not convex }}
$$

the Gaussian mixture model
log-likelihood of data:

$$
\log p(X \mid \mu, \Sigma, \pi)=\sum_{n=0}^{N-1} \log \left[\sum_{k=0}^{K-1} \pi_{k} \mathcal{N}\left(X_{n} \mid \mu_{k}, \Sigma_{k}\right)\right]
$$

Bayes Net for GMM
hyper prams

$$
\begin{aligned}
& \cdot \frac{K}{\pi}=\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right\}, \sum_{i=1}^{k} \pi_{i}=1 \\
& \text {. For each } k \in[k]: \mu_{k} \in \mathbb{R}^{d} \\
& \sum_{k} \equiv d \times d, \text { pos def }
\end{aligned}
$$

the responsibility function
given a Gaussian mixture model with known $\left\{\mu_{k}, \Sigma_{k}\right\}_{k \in[K]}$, and any data point X, we can associate a responsibility parameter to each cluster for the point $\overline{\overline{\text { to }}}$ be the probability of the underlying latent cluster responsibility
$\underbrace{\pi_{11}}_{\pi_{k}}+\sqrt[1]{\mathbb{N}\left(\mu_{1}, \Sigma_{1}\right)} \underbrace{}_{x}\left(z_{k}\right)=\underline{\mathbb{P}\left(z_{k}=1 \mid X\right)}=\frac{\pi_{k} \mathcal{N}\left(X \mid \mu_{k}, \Sigma_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}\left(X \mid \mu_{j}, \Sigma_{j}\right)}$

- Prior π, data $X \Rightarrow$ Posterior $\equiv V$
- 'Responsibility' each cluster has for 'explaining' the date

GMM: maximizing the likelihood

$$
\begin{aligned}
& \log p(X \mid \mu, \Sigma, \pi)=\sum_{n=0}^{N-1} \log \left[\sum_{k=0}^{K-1} \pi_{k}{\stackrel{\Sigma}{\mathcal{N}}\left(X_{k} \mid \mu_{k}, \Sigma_{k}\right)}_{-1 / 2}^{\operatorname{ex}\left(-\frac{1}{2}\right.}\left(X_{n}-\mu_{k} \Sigma^{\top} \Sigma_{k}^{-1}\left(x_{i}-\mu_{k}\right)\right)\right. \\
& \text { s.t } \quad \sum_{i}^{K} \pi_{i}=1
\end{aligned}
$$

Set $\frac{\partial \log p\left(x \mid,, \sum, \pi\right)}{\partial \theta}=0$ for ($\left.\begin{array}{l}\text { first order } \\ \text { conditias }\end{array}\right)$
$\Theta \in\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{k}, \Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{k}, \pi_{1}, \pi_{2}, \ldots, \pi_{k}\right\}$

GMM: maximizing the likelihood (for μ_{k})

$$
\begin{aligned}
& \log p(X \mid \mu, \Sigma, \pi)=\sum_{n=0}^{N-1} \log \left[\sum_{k=0}^{K-1} \pi_{k} \mathcal{N}\left(X_{n} \mid \mu_{k}, \Sigma_{k}\right)\right] \\
& \text { Foc: }-\sum_{n=1}^{N} \frac{\frac{\pi_{k} N\left(x \mid \mu_{k}, \varepsilon_{k}\right)}{\sum_{j} \pi_{j} N\left(x \mid \mu_{j}, \varepsilon_{j}\right)}}{\gamma_{x}\left(z_{k}\right)} \underbrace{\sum_{n}}_{\begin{array}{l}
\text { assuning incertible, mealtiply } \\
\text { by } \Sigma^{-1}
\end{array}}\left(x-\mu_{k}\right)=0
\end{aligned}
$$

GMM: maximizing the likelihood (for σ_{k})

$$
\log p(X \mid \mu, \Sigma, \pi)=\sum_{n=0}^{N-1} \log \left[\sum_{k=0}^{K-1} \pi_{k} \mathcal{N}\left(X_{n} \mid \mu_{k}, \Sigma_{k}\right)\right]
$$

Similarly (after some algebra) $\quad\left(N_{n}=\sum_{n=1}^{N} \gamma_{x_{n}}\left(z_{n}\right)\right)$

GMM: maximizing the likelihood (for π_{k})

$$
\begin{aligned}
\log p(X \mid \mu, \Sigma, \pi) & =\sum_{n=0}^{N-\alpha} \log \left[\sum_{k=0}^{K-1} \pi_{k} \mathcal{N}\left(X_{n} \mid \mu_{k}, \Sigma_{k}\right)\right] \\
\text { st } \quad \sum_{k=1}^{K} ग_{k} & =1
\end{aligned}
$$

$\min _{\lambda} \max _{\pi_{k}} \ln (p(x \mid \mu, \Sigma, \pi))+\lambda\left(\sum_{k=1}^{k} \pi_{k}-1\right)$

- $\underset{\text { wort problem: }}{\pi_{k}} \sum_{n=1}^{N} \frac{1}{\pi_{k}} \gamma_{x_{n}}\left(z_{k}\right)+\lambda=0, \sum \pi_{k}^{*}=1$

$$
\Rightarrow \quad \Pi_{k}^{*}=\frac{N_{k}}{\sum_{k=1}^{K} N_{k}}, \quad N_{k}=\sum_{k=1}^{N} \gamma_{\lambda_{n}}^{\prime}\left(z_{k}\right)
$$

Notes

1) Works for any mixtwe model Laxation Pas mali

2) Problem - The FOBs we 'circular'

alternate max ${ }^{n}$
'EM algorithm'
problems with MLE for GMMs
log-likelihood of data:

$$
\log p(X \mid \mu, \Sigma, \pi)=\sum_{n=0}^{N-1} \log \left[\sum_{k=0}^{K-1} \pi_{k} \mathcal{N}\left(X_{n} \mid \mu_{k}, \Sigma_{k}\right)\right]
$$

1) log-likelihood non-convex \Rightarrow unclear if unique maxima
2) What if we change 'labels' of clusters? like lihood remains same! $\Rightarrow K!$ alternate maxima ('benign' altermate maxima)
log-likelihood of data:

$$
\log p(X \mid \mu, \Sigma, \pi)=\sum_{n=0}^{N-1} \log \left[\sum_{k=0}^{K-1} \pi_{k} \mathcal{N}\left(X_{n} \mid \mu_{k}, \Sigma_{k}\right)\right]
$$

- Can partition points into 2 clusters $x \backslash x_{1}, x_{1}$
- Fit X_{1} with a very sharp dist"
ح) likelihood $\uparrow \infty$ (bad local minima)

EM algorithm in action

