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“probability theory is common sense reduced to calculation”



not quite. . .

Bertrand’s problem

given an equilateral triangle inscribed in a circle, and a random chord,

what is the probability the chord is longer than the side of the triangle?

the moral (for this course. . . and for life)

be very precise about defining experiments/random variables/distributions

also see Wikipedia article on Bertrand’s paradox
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the essentials

reading assignment

Bishop: chapter 1, sections 1.2 - 1.2.4

Mackay: chapter 2 (less formal, but much more fun!)

things you must know and understand

- random variables (rv) and cumulative distribution functions (cdf)

- conditional probabilities and Bayes rule

- expectation and variance of random variables

- independent and mutually exclusive events

- basic inequalities: union bound, Jensen, Markov/Chebyshev

- common rvs (Bernoulli, Binomial, Geometric, Gaussian (Normal))



random variables and cdf



sample space, random variable

random experiment: outcome cannot be predicted in advance.

sample space ⌦: the set of all possible outcomes of the experiment

random variable: any function from ⌦ ! R (random vector:⌦ ! Rd
)

example: flip two coins, and let X = # of heads



cumulative distribution function

ALERT!!

always try to think of probability and rvs through the cdf

for any rv X (discrete or continuous), its probability distribution is

defined by its cumulative distribution function (cdf)

F (x) =

using the cdf we can compute probabilities

P[a < X  b] =



visualizing a cdf

The plot of a cdf obeys 3 essential rules + one convention

Example: consider an rv 2 [�2, 5] with a jumps at 1 and 2



discrete random variables

for a discrete random variable taking values in N, another
characterization is its probability mass function (pmf) p(·)

p(x) = P[X = x ]

• any pmf p(x) has the following properties:

p(x) 2 [0, 1] 8 x 2 N ,
X

x2N
p(x) = 1

• the pmf p(·) is related to the cdf F (·) as

F (x) =

p(x) =



continuous random variables

for a continuous random variable taking values in R, another
characterization is its probability density function (pdf) f (·)

P[a < X  b] =

• any pdf f (x) has the following properties:

f (x) � 0 8 x 2 R ,

Z 1

�1
f (x)dx = 1

• ALERT!! It is not true that f (x) = P[X = x ]. In fact, for any x ,

P[X = x ] =



continuous random variables

thus, for continuous rv X with pdf f (·) and cdf F (·), we have

P[a < X  b] = F (b)� F (a) =

Z b

a
f (x)dx

now we can go from one function to the other as

F (x) =

f (x) =



expectations and independence



expected value (mean, average)

let X be a random variable, and g(·) be any real-valued function

• If X is a discrete rv with ⌦ = Z and pmf p(·), then

E[X ] =

E[g(X )] =

• If X is a continuous rv with ⌦ = R and pdf f (·), then

E[X ] =

E[g(X )] =



variance and standard deviation

• Definition: Var(X ) = �(X ) =

• (More useful formula for computing variance)

Var(X ) =



independence

what do we mean by “random variables X and Y are independent”?

(denoted as X ?? Y ; similarly, X 6?? Y for ‘not independent’)

intuitive definition: knowing X gives no information about Y

formal definition:

• One measure of independence between rv is their covariance

Cov(X ,Y ) = (formal definition)

= (for computing)



independence and covariance

how are independence and covariance related?

• X and Y are independent, then they are uncorrelated

in notation: X ?? Y ) Cov(X ,Y ) = 0

• however, uncorrelated rvs can be dependent

in notation: Cov(X ,Y ) = 0 ; X ?? Y

• Cov(X ,Y ) = 0 ) X ?? Y only for multivariate Gaussian rv

(this though is confusing; see this Wikipedia article)



linearity of expectation

for any rvs X and Y , and any constants a, b 2 R

E[aX + bY ] = aE[X ] + bE[Y ]

note 1: no assumptions! (in particular, does not need independence)

note 2: does not hold for variance in general

for general X ,Y

Var(aX + bY ) =

when X and Y are independent

Var(aX + bY ) =
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using linearity of expectation

the TAs get lazy and distribute graded assignments among n students

uniformly at random. On average, how many students get their own hw?

Let Xi = 1⇥
student i gets her hw

⇤ (indicator rv)

N = number of students who get their own hw =
P

10

i=1
Xi

then we have:

E[N] = E[
nX

i=1

Xi ]

=

nX

i=1

E[Xi ]

=

nX

i=1

P[Xi = 1] =

nX

i=1

1

n
= 1
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useful probability inequalities



inequality 1: The Union Bound

Let A1,A2, . . . ,Ak be events. Then

P(A1 [ A2 [ · · · [ Ak)  (P(A1) + P(A2) + · · ·+ P(Ak))



inequality 2: Jensen’s Inequality

If X is a random variable and f is a convex function, then

E[f (X )] � f (E[X ])

Proof sketch (plus way to remember)



inequality 3: Markov and Chebyshev’s inequalities

Markov’s inequality

For any rv. X � 0 with mean E[X ], and for any k > 0,

P [X � k]  E[X ]

k

Chebyshev’s inequality

For any rv. X with mean E[X ], finite variance �2 > 0, and for any k > 0,

P [|X � E[X ]| � k�]  1

k2



conditioning and Bayes’ rule



marginals and conditionals

let X and Y be discrete rvs taking values in N. denote the joint pmf:

pXY (x , y) = P[X = x ,Y = y ]

marginalization: computing individual pmfs from joint pmfs as

pX (x) =
X

y2N
pXY (x , y) pY (y) =

X

x2N
pXY (x , y)

conditioning: pmf of X given Y = y (with pY (y) > 0) defined as:

P[X = x |Y = y ] , pX |Y (x |y) =
pXY (x , y)

pY (y)

more generally, can define P[X 2 A|Y 2 B] for sets A,B 2 N
see also this visual demonstration



the basic ‘rules’ of Bayesian inference

let X and Y be discrete rvs taking values in N, with joint pmf p(x , y)

product rule

for x , y 2 N, we have: pXY (x , y) = pX (x)pY |X (y |x) = pY (y)pX |Y (x |y)

sum rule

for x 2 N, we have: pX (x) =
P

y2N pX |Y (x |y)pY (y)

and most importantly!

Bayes rule

for any x , y 2 N, we have:

pX |Y (x |y) =
pX (x)pY |X (y |x)P
x2N pY |X (y |x)pX (x)

see also this video for an intuitive take on Bayes rule



Bayesian inference: example

Mackay’s three cards

We have three cards C1,C2,C3, with C1 having faces Red-Blue, C2

having faces Blue-Blue; and C3 having faces Red-Red.

A card is randomly drawn and placed on a table – its upper face is Red.

What is the colour of its lower face?

C1 = Red-Blue, C2= Blue-Blue; C3= Red-Red. A card is randomly

drawn, and has upper face Red. What is the colour of its lower face?

Let X 2 {C1,C2,C3} be the identity of drawn card, Yb 2 {b, r} be the

color of bottom face, and Yt 2 {b, r} be the color of top face. Then:

P[Yb = b|Yt = b] = P[X = C2|Yt = b] =
P[Yt = b|X = C2]P[X = C2]

P[Yt = b]

=
1⇥ (1/3)

(1/2)⇥ (1/3) + 1⇥ (1/3) + 0⇥ (1/3)
= 2/3

ALERT!!

always write down the probability of everything



Bayesian inference: example

C1 = Red-Blue, C2= Blue-Blue; C3= Red-Red. A card is randomly

drawn, and has upper face Red. What is the colour of its lower face?

Let X 2 {C1,C2,C3} be the identity of drawn card, Yb 2 {b, r} be the

color of bottom face, and Yt 2 {b, r} be the color of top face. Then:

P[Yb = b|Yt = b] = P[X = C2|Yt = b] =
P[Yt = b|X = C2]P[X = C2]

P[Yt = b]

=
1⇥ (1/3)

(1/2)⇥ (1/3) + 1⇥ (1/3) + 0⇥ (1/3)
= 2/3

ALERT!!

always write down the probability of everything



Bayesian inference: example

Eddy’s mammogram problem

The probability a woman at age 40 has breast cancer is 0.01. A

mammogram detects the disease 80% of the time, but also mis-detects the

disease in healthy patients 9.6% of the time. If a woman at age 40 has a

positive mammogram test, what is the probability she has breast cancer?

credit: Micallef et al.
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see also this video for more about the odds ratio





fundamental principle of Bayesian statistics

– assume the world arises via an underlying generative model M
– use random variables to model all unknown parameters ✓

– incorporate all that is known by conditioning on data D

– use Bayes rule to update prior beliefs into posterior beliefs

p(✓|D,M) / p(✓|M)p(D|✓,M)



the likelihood principle

given model M with parameters ⇥, and data D, we define:

– the prior p(⇥|M): what you believe before you see data

– the posterior p(⇥|D,M): what you believe after you see data

– the marginal likelihood or evidence p(D|M): how probable is the data

under our prior and model

these three are probability distributions; the next is not

– the likelihood: L(⇥) , p(D|M, ✓): function of ⇥ summarizing data

the likelihood principle

given model M, all evidence in data D relevant to parameters ⇥ is

contained in the likelihood function L(⇥)

this is not without controversy; see Wikipedia article



REMEMBER THIS!!

given model M with parameters ⇥, and data D, we define:

– the prior p(⇥|M): what you believe before you see data

– the posterior p(⇥|D,M): what you believe after you see data

– the marginal likelihood or evidence p(D|M): how probable is the data

under our prior and model

– the likelihood: L(⇥) , p(D|M, ✓): function of ⇥ summarizing the data

the fundamental formula of Bayesian statistics

posterior =
likelihood⇥ prior

evidence

also see: Sir David Spiegelhalter on Bayes vs. Fisher



returning to vaccine trials

in a vaccine trial, scientists sequentially inject mice with a vaccine, and then

the pathogen, and record if the mice show symptoms

- they report they tested 102 mice, of which 5 developed symptoms

you use this to compute CIs for the vaccine’s e↵ectiveness

- it later emerges that they kept doing trials till they got 5 negative cases

(it just happened that it required 102 trials)

do you change your estimates based on this?



example: the mystery Bernoulli rv

• data D = {X1,X2, . . . ,Xn} 2 {0, 1}n

• model M: Xi are generated i.i.d. from a Ber(✓) distribution

fix ✓; what is P[Xi |M] for any i 2 [n]?

let H = # of ‘1’s in {X1,X2, . . . ,Xn}; what is P[H|M,D]?



the Bernoulli likelihood function

• data D = {X1,X2, . . . ,Xn} 2 {0, 1}n

• model M: Xi are generated i.i.d. from a Ber(✓) distribution

likelihood: L(⇥) , p(D|M, ✓): function of ⇥ summarizing the data



log-likelihood, su�cient statistics, MLE



quantifying information content



how much ‘information’ does a random variable have?



Mackay’s weighing puzzle


