ORIE 4742 - Info Theory and Bayesian ML

Lecture 1: Probability Review

January 23, 2020

Sid Banerjee, ORIE, Cornell

"probability theory is common sense reduced to calculation"

Bertrand's problem

given an equilateral triangle inscribed in a circle, and a random chord, what is the probability the chord is longer than the side of the triangle?

|P[chard ≥side] = 1/2

Bertrand's problem Paradox

given an equilateral triangle inscribed in a circle, and a random chord, what is the probability the chord is longer than the side of the triangle?

P[chov] > side]=1/2

Bertrand's problem

given an equilateral triangle inscribed in a circle, and a random chord, what is the probability the chord is longer than the side of the triangle?

Pick random conter in O

IP [chand > side] = 1/4

Bertrand's problem

given an equilateral triangle inscribed in a circle, and a random chord, what is the probability the chord is longer than the side of the triangle?

Bertrand's problem

given an equilateral triangle inscribed in a circle, and a random chord, what is the probability the chord is longer than the side of the triangle?

the moral (for this course... and for life)

be very precise about defining experiments/random variables/distributions

also see Wikipedia article on Bertrand's paradox

the essentials

reading assignment

Bishop: chapter 1, sections 1.2 - 1.2.4 Mackay: chapter 2 (less formal, but much more fun!)

things you must know and understand

- random variables (rv) and cumulative distribution functions (cdf)
- conditional probabilities and Bayes rule
- expectation and variance of random variables
- independent and mutually exclusive events (linearity of expectation)
- basic inequalities: union bound, Jensen, Markov/Chebyshev
- common rvs (Bernoulli, Binomial, Geometric, Gaussian (Normal))

random variables and cdf

random experiment: outcome cannot be predicted in advance.

sample space Ω : the set of all possible outcomes of the experiment

random variable: any function from $\Omega \to \mathbb{R}$ (random vector: $\Omega \to \mathbb{R}^d$)

cumulative distribution function

ALERT!!

always try to think of probability and rvs through the cdf

for any rv X (discrete or continuous), its probability distribution is defined by its cumulative distribution function (cdf)

$$F(x) = \prod_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{$$

using the cdf we can compute probabilities

 $\mathbb{P}[a < X \le b] = - \left[- \left(b \right) - \left[- \left(a \right) \right] \right]$

visualizing a cdf

discrete random variables

for a discrete random variable taking values in \mathbb{N} , another characterization is its probability mass function (pmf) $p(\cdot)$

 $p(x) = \mathbb{P}[X = x]$

• any pmf p(x) has the following properties:

$$p(x) \in [0,1] \, \forall x \in \mathbb{N}$$
 , $\sum_{x \in \mathbb{N}} p(x) = 1$

• the pmf $p(\cdot)$ is related to the cdf $F(\cdot)$ as

$$F(x) = \sum_{y \leq x} P(y)$$
$$p(x) = F(x) - F(x-1)$$

continuous random variables

for a continuous random variable taking values in \mathbb{R} , another characterization is its probability density function (pdf) $f(\cdot)$

$$\mathbb{P}[a < X \leq b] = \int_{a} \int_{a} f(x) dx$$

• any pdf f(x) has the following properties:

$$f(x) \geq 0 \, orall \, x \in \mathbb{R} \qquad , \qquad \int_{-\infty}^{\infty} f(x) dx = 1 \, .$$

• ALERTH It is not true that $f(x) = \mathbb{P}[X = x]$. In fact, for any x, $\mathbb{P}[X = x] = \bigcirc (\not \downarrow \quad \int (\not \sim))$

continuous random variables

thus, for continuous rv X with pdf $f(\cdot)$ and cdf $F(\cdot)$, we have $\mathbb{P}[a < X \le b] = F(b) - F(a) = \int_{a}^{b} f(x) dx$

now we can go from one function to the other as

$$F(x) = \int_{-\infty}^{\infty} f(x) dx$$

$$f(x) = \frac{d}{dx} F(x)$$
 (assuming differentiable...)

expectations and independence

expected value (mean, average)

let X be a random variable, and $g(\cdot)$ be any real-valued function

• If X is a discrete rv with $\Omega = \mathbb{Z}$ and pmf $p(\cdot)$, then

$$\mathbb{E}[X] = \sum_{\mathbf{x}} p(\mathbf{x})$$
$$\mathbb{E}[g(X)] = \sum_{\mathbf{x}} g(\mathbf{x}) p(\mathbf{x}) \quad \left(E_g \cdot g(\mathbf{x}) = (\mathbf{x} - \mathbb{E}[\mathbf{x}])^2 \right)$$
$$\Rightarrow \mathbb{E}[g(\mathbf{x})] = \operatorname{Van}(\mathbf{x})$$

• If X is a continuous rv with $\Omega = \mathbb{R}$ and pdf $f(\cdot)$, then $\mathbb{E}[X] = \int_{-\infty}^{\infty} \mathcal{L} \int_{-\infty}^{\infty} dx$ $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} \mathcal{L} \int_{-\infty}^{\infty} dx dx$

variance and standard deviation

anumher • Definition: $Var(X) = \left[\frac{1}{2} \int (X - E[x])^2 \right]$ $\sigma(X) = \sqrt{\alpha_n(X)}$ 9(2) • (More useful formula for computing variance) $Var(X) = \left[\int \left(\left(X - \mathbb{E}[X] \right)^2 \right) \right]$ F[x2] - E[x]² Sde-fact $\mathbb{E}[x^2] \ge \mathbb{E}[x]^2$ Universal property !!

independence

what do we mean by "random variables X and Y are independent"? (denoted as $X \perp \!\!\!\perp Y$; similarly, $X \not\!\!\!\perp Y$ for 'not independent')

intuitive definition: knowing X gives no information about Y

how are independence and covariance related?

- X and Y are independent, then they are uncorrelated in notation: X ⊥⊥ Y ⇒ Cov(X, Y) = 0
- however, uncorrelated rvs can be dependent
 in notation: Cov(X, Y) = 0 ⇒ X ⊥⊥ Y
- Cov(X, Y) = 0 ⇒ X ⊥⊥ Y only for multivariate Gaussian rv (this though is confusing; see this Wikipedia article)

linearity of expectation

for any rvs X and Y, and any constants $\underline{a}, \underline{b} \in \mathbb{R}$ $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$ inter combination
note 1: no assumptions! (in particular, does not need independence)

$$\mathbb{E}\left[\sum_{i=1}^{\infty}a_{i}X_{i}\right]=\sum_{i=1}^{\infty}a_{i}\mathbb{E}\left[X_{i}\right]$$

for any rvs X and Y, and any constants $a, b \in \mathbb{R}$

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

note 1: no assumptions! (in particular, does not need independence)

note 2: does not hold for variance in general

for general X, Y $Var(aX + bY) = a^{2} V_{m}(X) + b^{2} V_{a}(Y) + 2ab (oo(X,Y))$ when X and Y are independent $Var(aX + bY) = a^{2} V_{a}(X) + b^{2} V_{a}(Y)$

using linearity of expectation (enge) pes problem)

the TAs get lazy and distribute graded assignments among n students uniformly at random. On average, how many students get their own hw?

the TAs get lazy and distribute graded assignments among n students uniformly at random. On average, how many students get their own hw?

Let $X_i = \mathbb{1}$ [student i gets her hw] (indicator rv) = $\begin{cases} 1 & \text{freel} \\ 0 & \text{ow} \end{cases}$ N = number of students who get their own hw = $\sum_{i=1}^{10} X_i$ then we have:

$$\mathcal{E}[\mathcal{N}] = \mathbb{E}[\sum_{i=1}^{n} X_i]$$

= $\sum_{i=1}^{n} \mathbb{E}[X_i]$
= $\sum_{i=1}^{n} \mathbb{P}[X_i = 1] = \sum_{i=1}^{n} \frac{1}{n} = 1$

useful probability inequalities

inequality 1: The Union Bound

Let
$$A_1, A_2, ..., A_k$$
 be events. Then

$$P(A_1 \cup A_2 \cup \cdots \cup A_k) \leq (P(A_1) + P(A_2) + \cdots + P(A_k))$$

$$P[A_1 \text{ hoppens OR } A_2 \text{ hoppens OR } \cdots \text{ OR } A_k \text{ hop pens}]$$

$$\leq \sum P[A_1 \text{ hoppens}]$$

$$A_1 = A_2$$

inequality 3: Markov and Chebyshev's inequalities

Markov's inequality

For any rv. $X \ge 0$ with mean $\mathbb{E}[X]$, and for any k > 0,

$$\mathbb{P}\left[X \ge k\right] \le \frac{\mathbb{E}[X]}{k}$$

Chebyshev's inequality

For any rv. X with mean $\mathbb{E}[X]$, finite variance $\sigma^2 > 0$, and for any k > 0,

$$\mathbb{P}\left[|X - \mathbb{E}[X]| \geq k\sigma
ight] \leq rac{1}{k^2}$$

X is more (or less) than
$$\mathbb{E}[X]_{\overline{t}} R$$
 stilled
with very small $\left(\frac{L}{k^2}\right) Prob$

conditioning and Bayes' rule

marginals and conditionals

let X and Y be discrete rvs taking values in \mathbb{N} . denote the joint pmf: $p_{XY}(x, y) = \mathbb{P}[X = x, Y = y]$

marginalization: computing individual pmfs from joint pmfs as

$$p_X(x) = \sum_{y \in \mathbb{N}} p_{XY}(x, y)$$
 $p_Y(y) = \sum_{x \in \mathbb{N}} p_{XY}(x, y)$

conditioning: pmf of X given Y = y (with $p_Y(y) > 0$) defined as:

$$\mathbb{P}[X = x | Y = y] \triangleq p_{X|Y}(x|y) = \frac{p_{XY}(x, y)}{p_Y(y)}$$

more generally, can define $\mathbb{P}[X \in \mathcal{A} | Y \in \mathcal{B}]$ for sets $\mathcal{A}, \mathcal{B} \in \mathbb{N}$ see also this visual demonstration

the basic 'rules' of Bayesian inference

and most importantly!

see also this video for an intuitive take on Bayes rule

Mackay's three cards (Monty 1-6) problem

We have three cards C1, C2, C3, with C1 having faces Red-Blue, C2 having faces Blue-Blue; and C3 having faces Red-Red.

A card is randomly drawn and placed on a table – its upper face is **Red**. What is the colour of its lower face?

C1 = Red-Rise, C2 = Rise-Rise; C3 = Red-Red. A card is randomly drawn, and has upper face Red. What is the colour of its lower face?

Let $X \in \{C1, C2, C3\}$ be the identity of drawn card, $Y_b \in \{b, r\}$ be the color of bottom face, and $Y_t \in \{b, r\}$ be the color of top face. Then:

$$\mathbb{P}[Y_b = b | Y_t = b] = \mathbb{P}[X = C2 | Y_t = b] = \frac{\mathbb{P}[Y_t = b | X = C2] \mathbb{P}[X = C2]}{\mathbb{P}[Y_t = b]}$$
$$= \frac{1 \times (1/3)}{(1/2) \times (1/3) + 1 \times (1/3) + 0 \times (1/3)} = 2/3$$

ALERT!!

always write down the probability of everything

Eddy's mammogram problem

The probability a woman at age 40 has breast cancer is 0.01. A mammogram detects the disease 80% of the time, but also mis-detects the disease in healthy patients 9.6% of the time. If a woman at age 40 has a positive mammogram test, what is the probability she has breast cancer?

 $\frac{0.01 \times 0.8}{0.01 \times 0.8 + 0.99 \times 0.1}$

Eddy's mammogram problem

The probability a woman at age 40 has breast cancer is 0.01. A mammogram detects the disease 80% of the time, but also mis-detects the disease in healthy patients 9.6% of the time. If a woman at age 40 has a positive mammogram test, what is the probability she has breast cancer?

see also this video for more about the odds ratio

credit: Micallef et al.

fundamental principle of Bayesian statistics

- assume the world arises via an underlying generative model ${\cal M}$
- use random variables to model all unknown parameters heta
- incorporate all that is known by conditioning on data D
- use Bayes rule to update prior beliefs into posterior beliefs

 $p(\theta|D, \mathcal{M}) \propto p(\theta|\mathcal{M})p(D|\theta, \mathcal{M})$ posterior prior X likelihood

the likelihood principle

given model \mathcal{M} with parameters Θ , and data D, we define:

- the prior $p(\Theta|\mathcal{M})$: what you believe before you see data
- the posterior $p(\Theta|D,\mathcal{M})$: what you believe after you see data
- the marginal likelihood or evidence p(D|M): how probable is the data under our prior and model

these three are probability distributions; the next is not

- the likelihood: $\mathcal{L}(\Theta) \triangleq \rho(D|\mathcal{M}, \theta)$: function of Θ summarizing data

the likelihood principle

given model \mathcal{M} , all evidence in data D relevant to parameters Θ is contained in the likelihood function $\mathcal{L}(\Theta)$

this is not without controversy; see Wikipedia article

REMEMBER THIS!!

given model \mathcal{M} with parameters Θ , and data D, we define:

- the prior $p(\Theta|\mathcal{M})$: what you believe before you see data
- the posterior $p(\Theta|D, \mathcal{M})$: what you believe after you see data
- the marginal likelihood or evidence p(D|M): how probable is the data under our prior and model
- the likelihood: $\mathcal{L}(\Theta) \triangleq p(D|\mathcal{M}, \theta)$: function of Θ summarizing the data

the fundamental formula of Bayesian statistics $posterior = \frac{likelihood \times prior}{likelihood \times prior}$

also see: Sir David Spiegelhalter on Bayes vs. Fisher

in a vaccine trial, scientists sequentially inject mice with a vaccine, and then the pathogen, and record if the mice show symptoms

- they report they tested 102 mice, of which 5 developed symptoms you use this to compute Cls for the vaccine's effectiveness
- it later emerges that they kept doing trials till they got 5 negative cases (it just happened that it required 102 trials)
 do you change your estimates based on this?

example: the mystery Bernoulli rv

data D = {X₁, X₂,..., X_n} ∈ {0,1}ⁿ
model M: X_i are generated i.i.d. from a Ber(θ) distribution

fix θ ; what is $\mathbb{P}[X_i|\mathcal{M}]$ for any $i \in [n]$?

$$\begin{bmatrix} P \begin{bmatrix} O \mid I & | N_{oba}|, \Theta \end{bmatrix} = (I - \Theta) \begin{bmatrix} O & O \\ O & O \end{bmatrix} = (I - \Theta)^{\text{tt}} o(O_{s} \mid Add \cap O)^{\text{tt}} o(O_{s} \mid Add \cap O)^{\text{tt}} o(O_{s} \mid Add \cap O) \end{bmatrix}$$

let $H = \#$ of '1's in $\{X_{1}, X_{2}, \dots, X_{n}\}$; what is $\mathbb{P}[H|\mathcal{M}, D]$?

the Bernoulli likelihood function

• data $D = \{X_1, X_2, \dots, X_n\} \in \{0, 1\}^n$

• model \mathcal{M} : X_i are generated i.i.d. from a $Ber(\theta)$ distribution

likelihood: $\mathcal{L}(\Theta) \triangleq p(D|\mathcal{M}, \theta)$: function of Θ summarizing the data

log-likelihood, sufficient statistics, MLE

quantifying information content

how much 'information' does a random variable have?

Mackay's weighing puzzle

You are given 12 balls, all equal in weight except for one that is either heavier or lighter. Design a strategy to determine which is the odd ball and whether it is heavier or lighter, in as few uses of the balance as possible.