ORIE 4742 - Info Theory and Bayesian ML

Lecture 3: Measuring Information

February 7, 2021
Sid Banerjee, ORIE, Cornell

Mackay's weighing puzzle

The weighing problem

You are given 12 balls, all equal in weight except for one that is either heavier or lighter.
Design a strategy to determine
which is the odd ball
and whether it is heavier or lighter,
in as few uses of the balance as possible.

reading assignment: chapter 4 of Mackay
quantifying information content

measuring information

consider (discrete) $r v \mathcal{X}$ taking values $\mathcal{X}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, with probability mass function $\mathbb{P}\left[X=a_{i}\right]=p_{i} \forall i, \sum_{i=1}^{k} p_{i}=1$

Shannon's entropy function

- outcome $X=a_{i}$ has information content

$$
h\left(a_{i}\right)=\log _{2}\left(\frac{1}{p_{i}}\right)
$$

- random variable X has entropy

$$
H(X)=\mathbb{E}[h(X)]=\sum_{i=1}^{k} p_{i} \log _{2}\left(\frac{1}{p_{i}}\right)
$$

entropy: basic properties

Shannon's entropy function

- outcome $X=a_{i}$ has information content: $h\left(a_{i}\right)=\log _{2}\left(\frac{1}{p_{i}}\right)$
- random variable X has entropy: $H(X)=\mathbb{E}[h(X)]=\sum_{i=1}^{k} p_{i} \log _{2}\left(\frac{1}{p_{i}}\right)$
- only depends on distribution of X (i.e., $\left.H(X)=H\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)$
- $H(X) \geq 0$ for all X
- if $X \Perp Y$, then $H(X, Y)=H(X)+H(Y)$ where joint entropy $H(X, Y) \triangleq \sum_{(x, y)} p(x, y) \log _{2} 1 / p(x, y)$

entropy: basic properties

Shannon's entropy function

- outcome $X=a_{i}$ has information content: $h\left(a_{i}\right)=\log _{2}\left(\frac{1}{p_{i}}\right)$
- random variable X has entropy: $H(X)=\mathbb{E}[h(X)]=\sum_{i=1}^{k} p_{i} \log _{2}\left(\frac{1}{p_{i}}\right)$
- if $X \sim$ uniform on \mathcal{X}, then $H(X)=\log _{2}|\mathcal{X}|$; else, $H(X) \leq \log _{2}|\mathcal{X}|$

designing questions to maximize information gain

the game of 'sixty three'
guess number $x \in\{0,1,2, \ldots, 62,63\}$

designing questions to maximize information gain

the game of 'submarine'
player 1 hides a submarine in one square of an 8×8 grid player 2 shoots at one square per round

designing questions to maximize information gain

```
the game of 'submarine'
player 1 hides a submarine in one square of an \(8 \times 8\) grid player 2 shoots at one square per round
```

move \#	1	2	32	48	49
question	G3	B1	E5	F3	H3
outcome	$x=\mathrm{n}$	$x=\mathrm{n}$	$x=\mathrm{n}$	$x=\mathrm{n}$	$x=\mathrm{y}$
$P(x)$	$\frac{63}{64}$	$\frac{62}{63}$	$\frac{32}{33}$	$\frac{16}{17}$	$\frac{1}{16}$
$h(x)$	0.0227	0.0230	0.0443	0.0874	4.0
Total info.	0.0227	0.0458	1.0	2.0	6.0

Mackay's weighing puzzle

The weighing problem

You are given 12 balls, all equal in weight except for one that is either heavier or lighter.
Design a strategy to determine
which is the odd ball
and whether it is heavier or lighter,
in as few uses of the balance as possible.

weighing game: an optimal solution

binary entropy function

if X Bernoulli (p), then $H(X) \triangleq H_{2}(p)=-p \log _{2}(p)-(1-p) \log _{2}(1-p)$

- (useful formula) for any $k, N \in \mathbb{N}, k \leq N: \quad\binom{N}{k} \approx 2^{N H_{2}(k / N)}$

conditional entropy

suppose $X \sim\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$, and let $Y=\mathbb{1}_{\left[X \in\left\{a_{1}, a_{2}\right\}\right]}$; then we have

$$
H(X)=H(Y)+\left(p_{1}+p_{2}\right) H_{2}\left(\frac{p_{1}}{p_{1}+p_{2}}\right)+\left(p_{3}+p_{4}\right) H_{2}\left(\frac{p_{3}}{p_{3}+p_{4}}\right)
$$

conditional entropy

suppose $X \sim\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$, and let $Y=\mathbb{1}_{\left[X \in\left\{a_{1}, a_{2}\right\}\right]}$; then we have

$$
H(X)=H(Y)+\left(p_{1}+p_{2}\right) H_{2}\left(\frac{p_{1}}{p_{1}+p_{2}}\right)+\left(p_{3}+p_{4}\right) H_{2}\left(\frac{p_{3}}{p_{3}+p_{4}}\right)
$$

conditional entropy

for any rvs $X, Y: H(X \mid Y)=\sum_{y \in \mathcal{Y}} p(y) H(X \mid Y=y)$

$$
=\sum_{y \in \mathcal{Y}} p(y) \sum_{x \in \mathcal{X}} p(x \mid y) \log _{2}(1 / p(x \mid y))
$$

conditional entropy

conditional entropy

for any rvs $X, Y: H(X \mid Y)=\sum_{y \in \mathcal{Y}} p(y) H(X \mid Y=y)$

$$
=\sum_{y \in \mathcal{Y}} p(y) \sum_{x \in \mathcal{X}} p(x \mid y) \log _{2}(1 / p(x \mid y))
$$

the chain rule
for any rvs X, Y :

$$
H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)
$$

