

ORIE 4742 - Info Theory and Bayesian ML

Chapter 5: Channel Coding

Februaru 11, 2020 Sid Banerjee, ORIE, Cornell IP[\$\$ + 5] IP[\$\$ + 5] Rate (#tof symbols Channel use

dependent rv and information content

entropy: basic properties

rv X taking values $\mathcal{X} = \{a_1, a_2, \dots, a_k\}$, with pmf $\mathbb{P}[X = a_i] = p_i$ Shannon's entropy function

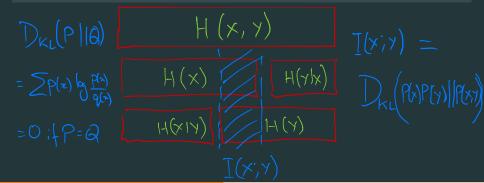
- outcome $X = a_i$ has information content: $h(a_i) = \log_2\left(\frac{1}{p_i}\right)$
- random variable X has entropy: $H(X) = \mathbb{E}[h(X)] = \sum_{i=1}^{k} p_i \log_2\left(\frac{1}{p_i}\right)$
- only depends on distribution of X (i.e., $H(X) = H(p_1, p_2, \dots, p_k))$
- $H(X) \ge 0$ for all X
- if $X \sim$ uniform on \mathcal{X} , then $H(X) = \log_2 |\mathcal{X}|$; else, $H(X) \leq \log_2 |\mathcal{X}|$
- if $X \perp Y$, then H(X, Y) = H(X) + H(Y)where joint entropy $H(X, Y) \triangleq \sum_{(x,y)} p(x, y) \log_2 1/p(x, y)$

mutual information

mutual informatior

for any rvs X, Y: I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y)

moreover, given any other conditioning rv Z I(X; Y|Z) = H(X|Z) - H(X|Y,Z) = H(Y|Z) - H(Y|X,Z)



conditional entropy

conditional entropy

for any rvs X, Y:
$$H(X|Y) = \sum_{y \in \mathcal{Y}} p(y) H(X|Y = y)$$

 $= \sum_{y \in \mathcal{Y}} p(y) \sum_{x \in \mathcal{X}} p(x|y) \log_2(1/p(x|y))$
David) $H(X,Y) = \sum_{\{x,y\}} P(3,y) \log_2(\frac{1}{p(x,y)}) = \sum_{\{x,y\}} p(x,y) h(3,y)$
(Mavginals) $H(x) = \sum_{x} p(x) h(x) , H(Y) = \sum_{y} p(y) h(y)$
(conditional) $\cdot \left\{ P(x|y) = P[X=x|Y=y] \right\}_{x \in \mathcal{X}} \quad \forall y \in \mathcal{Y}$
 $h(x|y) = \log_1(\frac{1}{p(x|y)})$
 $l - l(X|Y) = \sum_{y} P(y) (\sum_{x} p(x|y) h(x|y))$

the chain rule

the chain rule (information content) for any rvs X, Y and realizations x, y:

the chain rule

the chain rule (entropy) for any rvs X, Y: p(n) log_ (1/p(m)) = = p(n,y) log_ (1/p(m)) $\sum p(a,y) \log_1 \left(\frac{1}{p(a|y)} \right)$

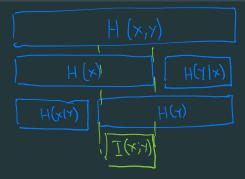
mutual information

mutual information

for any rvs X, Y:

I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)

moreover, given any other conditioning rv Z I(X; Y|Z) = H(X|Z) - H(X|Y,Z) = H(Y|Z) - H(Y|X,Z)



H(x,y) = H(x) + H(y) - T(x; y)

example

P(x, y)	h(***) x				P(y)
		1	2	3	4	
	1	$1/_{8}$ 3	1/164	1/325	1/325	1/4
y	2	1/164	1/8 ³	$1/_{32}$	$1/_{32}$	$1/_{4}$
	3	1/16 ⁴	1/16	1/16	1/16	$1/_{4}$
	4	1/4 2	0	0	0	$1/_{4}$
P	(x)	$1/_{2}$	$1/_{4}$	$1/_{8}$	$1/_{8}$	
	h(z)		2	3	3	

1/8 1/2 1/8 <u>78</u> 1/4 $\frac{1}{2}$ 1/2 5 0

mutual information and KL divergence

mutual information

for any rvs X, Y: I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)

$$I(X;Y) = D_{kL}(P(X,Y) || P(X)P(Y))$$

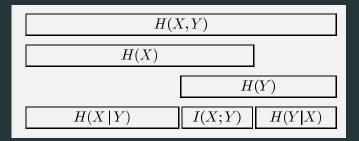
$$\xrightarrow{P_{XY}(x,y)} f_{X}(x,y) = \int_{P(x,Y)} f_{X}(X,Y) || P(X)P(Y)$$

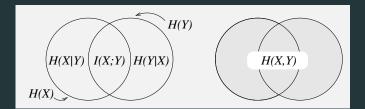
$$\xrightarrow{P_{XY}(x,y)} f_{X}(X,Y) = \int_{P(x,Y)} f_{X}(X,Y) || P(X)P(Y)$$

increase in code size if you encode P(2,y) using optimal code for P(X)P(Y)

P.C=

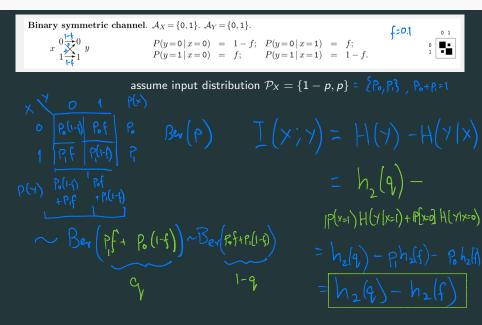
visualizing mutual information



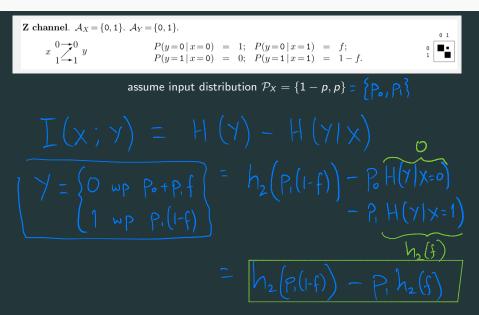


channel coding

mutual information for the BSC



mutual information for the Z-channel



 $P_i(i-f)$ Bayes Thm

mutual information for the erasure channel

Binary erasure channel. $A_X = \{0, 1\}$. $A_Y = \{0, ?, 1\}$. 0 1 $x \xrightarrow{0}_{1} y$ P(y=0 | x=0) = 1-f; P(y=0 | x=1) = 0;• P(y=? | x=0) = f; P(y=? | x=1) = f;P(y=1 | x=0) = 0; P(y=1 | x=1) = 1-f.assume input distribution $\mathcal{P}_X = \{1 - p, p\} = \{\beta, \rho, \}$ - 5 p(m) H(Y/X=m) . $= 2 P^{(w)} H(7|x=w) + P_{0} h_{2}(f) - P_{1} h_{2}(f)$ However, both H(HAR) $= (-f)h_2(P_1)$ & H(4/x=0) are ho(4) Let 2 = 11 {7 = ?], then H(y) = H(z) + H(y|z)

capacity of a channel

channel capacity

the capacity of a channel Q, with input A_X and output A_{y} , is

 $C(\mathcal{Q}) = \max_{\mathcal{P}_X} I(X;Y)$

any arg max \mathcal{P}_X^{\star} is called the optimal input distribution

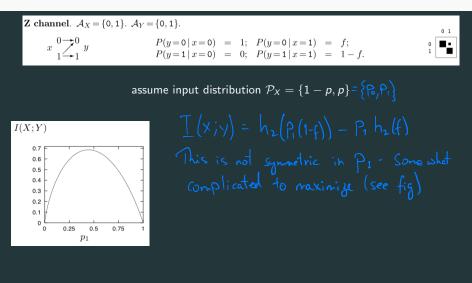
Shannon's channel coding theorem

can communicate $\leq C$ bits of information per channel use without error!

capacity of the BSC

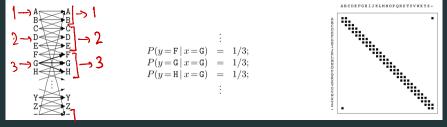
Binary symmetric channel. $A_X = \{0, 1\}$. $A_Y = \{0, 1\}$. $x \stackrel{0}{\xrightarrow{1}} \stackrel{1}{\xrightarrow{1}} \stackrel{0}{\xrightarrow{1}} y$ P(y=0 | x=0) = 1-f; P(y=0 | x=1) = f;P(y=1 | x=0) = f; P(y=1 | x=1) = 1-f.assume input distribution $\mathcal{P}_X = \{1 - p, p\}$ I(X;Y)0.4 0.3 0.2 0.1 0 0.25 0.5 0.75 0 p_1 =) f = Set q= 1/2 => P, f+(1-p,)(1-f)= 1/2 => P,= p=1/2

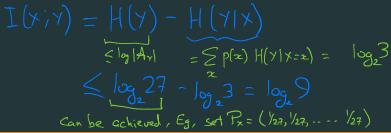
capacity of the Z-channel



the noisy typewriter

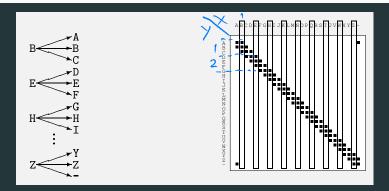
Noisy typewriter. $A_X = A_Y = \text{the 27 letters } \{A, B, \dots, Z, -\}$. The letters are arranged in a circle, and when the typist attempts to type B, what comes out is either A, B or C, with probability $\frac{1}{3}$ each; when the input is C, the output is B, C or D; and so forth, with the final letter '-' adjacent to the first letter A.



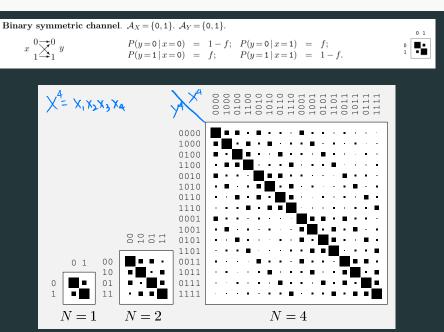


Capacity | Coding for Noisy type writer

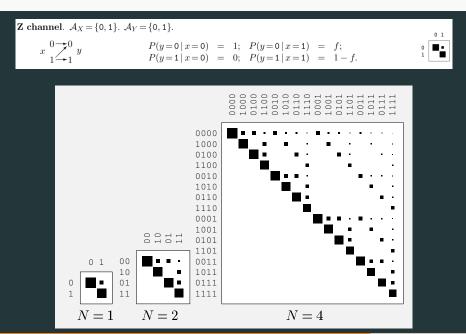
another view of the noisy typewriter



expanded channel for the BSC



expanded channel for the Z-channel



lossless compression via typical set encoding

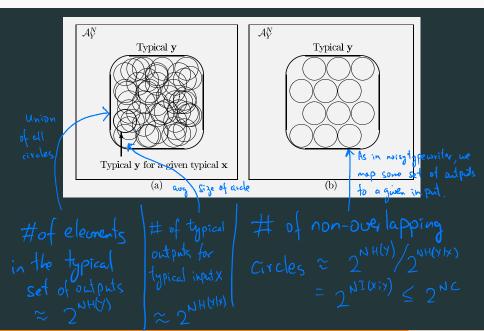
typical set

iid source produces $X^N = (X_1 X_2 \dots X_N)$; each $X_i \in \mathcal{X}$ has entropy H(X)then X^N is very likely to be one of $\approx 2^{NH(X)}$ typical strings, all of which have probability $\approx 2^{NH(X)}$

Recall-bent coin lottery
-
$$X_1 X_2 \dots X_{1000} \sim Bin(1000, f)$$

- Most of the time, # of 1s = $1000 f \mp 11000 f$

typical set and non-confusable subset



block codes, encoding, decoding

block code

for channel Q with input A_X , an (N, K)-block code is a list of $S = 2^K$ codewords $\{x^{(1)}, x^{(2)}, \ldots, x^{(2^K)}\}$ with $x^{(i)} \in A_X^N$ (i.e., of length N)

encoder

– using (N, K)-block code, can encode signal $s \in \{1, 2, 3, \dots, 2^K\}$ as x(s)

- the rate of the code is R = N/K bits per channel use

decoder

- mapping from each length-N string $y \in \mathcal{A}_Y^N$ of channel outputs to a codeword label $\hat{s} \in \{\varphi, 1, 2, 3, \dots, 2^K\}$ as x(s)- φ indicates failure

block codes and capacity

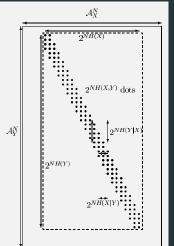
block code

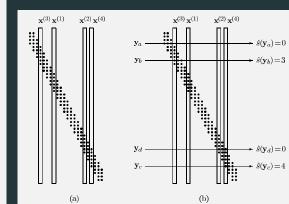
for channel Q with input A_X , an (N, K)-block code is a list of $S = 2^K$ codewords $\{x^{(1)}, x^{(2)}, \ldots, x^{(2^K)}\}$ with $x^{(i)} \in \mathcal{A}_X^N$ (i.e., of length N) – the rate of the code is R = N/K bits per channel use

Shannon's channel coding theorem

For any $\epsilon > 0$ and R < C, for large enough N, there exists a block code of length N and rate $\geq R$ such that probability of block error is $< \epsilon$.

intuition behind proof





erasure channel capacity

Binary erasure channel. $A_X = \{0, 1\}$. $A_Y = \{0, ?, 1\}$. P(y=0 | x=0) = 1-f; P(y=0 | x=1) = 0; $x \xrightarrow{0}_{1}^{0} y$ • P(y=? | x=0) = f; P(y=? | x=1) = f;P(y=1 | x=0) = 0; P(y=1 | x=1) = 1-f.

feedback coding