# styrows rodes (Markov showtov 6)

### problems with Huffman codes

#### changing ensemble

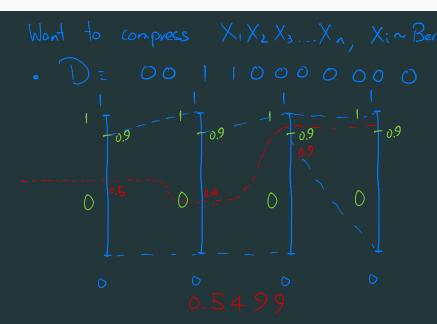
the extra bit: we know Huffman gives  $H(X) \leq \mathbb{E}[L_C(X)] \leq H(X) + 1$ 

| a | 0.001 | 00000 |
|---|-------|-------|
| b | 0.001 | 00001 |
| С | 0.990 | 1     |
| d | 0.001 | 00010 |
| е | 0.001 | 00011 |
| f | 0.001 | 0100  |
| g | 0.001 | 0101  |
| h | 0.001 | 0110  |
| i | 0.001 | 0111  |
| j | 0.001 | 0010  |
| k | 0.001 | 0011  |
|   |       |       |

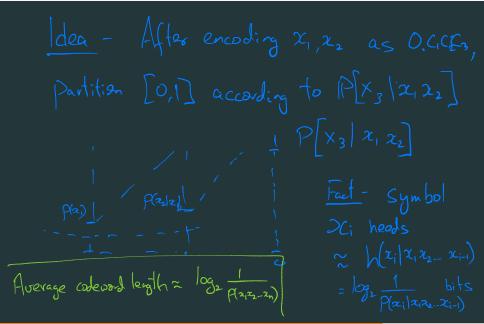
$$H(X) = 0.114$$
  
 $\mathbb{E}[L]/H(X) = 9$ 

 $\mathbb{E}[\mathsf{length}] = 1.034$ 

## the guessing game


## how to model data sources

- 1) ild sources, known distr 2) ild sources, unknown distr (universal codes)
- (arithmetic) X, X2.... Xn, P(X1), P(X2|X1), P(X3|X1X)...
  - 4) Unknown probabilistic model (Lempel-2io, Dictionary codes)


# two approaches to stream coding

- · Arithmetic Coding · Lempel-Ziv cooling (Dictionary coding)
  - Generate and stone a "dictionary"

#### arithmetic coding



# arithmetic coding



#### application of arithmetic coding beyond compression



https://www.youtube.com/watch?v=nr3s4613DX8

## Lempel-Ziv codes (dictionary codes)

#### Lempel-Ziv-Welch coding

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$  | source substrings      | λ   | 1     | 0     | 11      | 01      | 010      | 00       | 10       |
|---------------------------------------------------------|------------------------|-----|-------|-------|---------|---------|----------|----------|----------|
| $s(n)_{ m binary}$ 000 001 010 011 100 101 110          | s(n)                   | 0   |       |       |         | 4       | 5        | 6        | 7        |
|                                                         | $s(n)_{\text{binary}}$ | 000 | 001   | 010   | 011     | 100     | 101      | 110      | 111      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |                        |     | (, 1) | (0,0) | (01, 1) | (10, 1) | (100, 0) | (010, 0) | (001, 0) |

. As 
$$n > \alpha$$
,  $|L(x_1 - x_n, c)| \approx H(x_1, ..., x_n)$