
ORIE 4742 - Info Theory and Bayesian ML

Lecture 3: Information Measures and Data Compression

January 27, 2020

Sid Banerjee, ORIE, Cornell


Mackay's weighing puzzle

You are given 12 balls, all equal in weight except for one that is either heavier or lighter. Design a strategy to determine which is the odd ball and whether it is heavier or lighter,

in as few uses of the balance as possible.

how much 'information' does a random variable have?

reading assignment: chapter 4 of Mackay

quantifying information content

measuring information

consider (discrete) rv X taking values $\mathcal{X} = \{a_1, a_2, \dots, a_k\}$, with probability mass function $\mathbb{P}[X = a_i] = p_i \forall i, \sum_{i=1}^k p_i = 1$

Shannon's entropy function

• outcome $X = a_i$ has information content $h(a_i) = \log_2\left(\frac{1}{p_i}\right) b_i^{+}s$ • random variable X has entropy $H(X) = \mathbb{E}[h(X)] = \sum_{i=1}^{k} p_i \log_2\left(\frac{1}{p_i}\right)$

entropy: basic properties

Shannon's entropy function

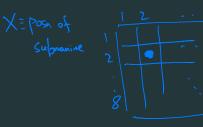
- outcome $X = a_i$ has information content: $h(a_i) = \log_2\left(\frac{1}{p_i}\right)$
- random variable X has entropy: $H(X) = \mathbb{E}[h(X)] = \sum_{i=1}^{k} p_i \log_2\left(\frac{1}{p_i}\right)$
- only depends on distribution of X (i.e., $H(X) = H(p_1, p_2, ..., p_k)$)
- $H(X) \ge 0$ for all X
- if $X \perp Y$, then H(X, Y) = H(X) + H(Y)where joint entropy $H(X, Y) \triangleq \sum_{(x,y)} p(x,y) \log_2 1/p(x,y)$

$$Pf - H(X, Y) = \underset{(x,y)}{\leq} - \underset{(x,y)}{F_{x}(x)} p_{y}(y) \log_{2} \left(p_{x}(x) p_{y}(y) \right)$$
$$= -\underset{x}{\geq} \underset{(x,y)}{\geq} \left(p_{x}(x) p_{y}(y) \log_{2} p_{x}(x) \right) - \underset{y}{\leq} \underset{(x,y)}{\leq} p_{x}(x) p_{y}(y) \log_{2} p_{x}(y)$$
$$= -\underset{x}{\leq} p_{x}(x) \log_{2} p_{x}(x) - \underset{y}{\leq} p_{y}(y) \log_{2} p_{y}(y)$$

Shannon's entropy function

- outcome $X = a_i$ has information content: $h(a_i) = \log_2\left(\frac{1}{p_i}\right)$
- random variable X has entropy: $H(X) = \mathbb{E}[h(X)] = \sum_{i=1}^{k} p_i \log_2\left(\frac{1}{p_i}\right)$
- if $X \sim$ uniform on \mathcal{X} , then $H(X) = \log_2 |\mathcal{X}|$; else, $H(X) \leq \log_2 |\mathcal{X}|$
 - $\begin{array}{l} \text{If } P_{i} = \frac{1}{|\mathbf{x}_{1}|} \forall a: \in \mathbf{X}, \text{Hen } \sum_{i} P_{i} \log_{i} P_{i} = \sum_{i} \frac{1}{|\mathbf{x}_{1}|} \log_{2} |\mathbf{x}_{1}| = \log_{2} |\mathbf{x}_{1}| \\ \text{If } P_{i} = \sum_{i=1}^{|\mathbf{x}_{1}|} P_{i} = 1, P_{i} \geqslant 0, \quad H((P_{i}, P_{i}, P_{i}, \mathbf{x})) = \sum_{i=1}^{|\mathbf{x}_{1}|} P_{i} \log_{2} \frac{1}{|\mathbf{x}_{1}|} \\ \text{If } (\mathbf{x}) = \sum_{i=1}^{|\mathbf{x}_{1}|} P_{i} h(a_{i}) = \mathbb{E} \left[h(\mathbf{x}) \right]^{i=1} \mathbb{E} \left[\log_{2} \left(g(\mathbf{x}) \right) \right] / P(\mathbf{x}) \\ \leq \log_{2} \mathbb{E} \left[g(\mathbf{x}) \right] = \log_{2} \left(\sum_{i=1}^{|\mathbf{x}_{1}|} P_{i} \left(\frac{1}{|\mathbf{x}_{1}|} \right) \right) = \log_{2} |\mathbf{x}| \\ \text{Jongents}, \quad \text{Since } \log|\mathbf{x}| > 16 \text{ comments}. \end{array}$

designing questions to maximize information gain

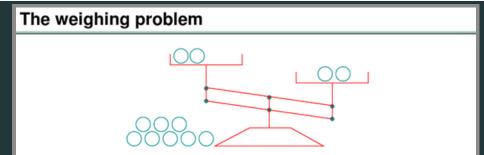

the game of 'sixty three

guess number
$$X \in \{0, 1, 2, \dots, 62, 63\}$$
, Assume $X \sim U_{ni}f(\{0, \dots, 63\})$
 $\cdot \Theta = 1$ is $X \gg 32$
 $\downarrow 0$
 $X \in \{32, 33, \dots, 63\}$ up $1/2$
 $\downarrow 0$
 $X \in \{0, 1, \dots, 31\}$ up $1/2$
 $\downarrow 0$
 $X \in \{0, 1, \dots, 31\}$ up $1/2$
 $\downarrow 0$
 $X \in \{0, \dots, 31\}$ up $1/2$
 $\downarrow 0$
 $X \in \{0, \dots, 31\}$ up $1/2$
 $\downarrow 0$
 $X \in \{0, \dots, 53\}$ up $1/2$
 $\downarrow 0$
 $X \in \{0, \dots, 53\}$ up $1/2$
 $\downarrow 0$
 $X \in \{0, \dots, 53\}$ up $1/2$
 $\downarrow 0$
 $X \in \{0, \dots, 53\}$ up $1/2$
 $\downarrow 0$
 $X \in \{0, \dots, 53\}$ up $1/2$
 $\downarrow 0$
 $X \in \{0, \dots, 53\}$ up $1/2$
 $\downarrow 0$
 $X \in \{0, \dots, 53\}$ up $1/2$
 $\downarrow 0$
 $X \in \{0, \dots, 53\}$ up $1/2$
 $\downarrow 0$
 $X \in \{0, \dots, 53\}$ up $1/2$
 $\downarrow 0$
 $X \in \{0, \dots, 53\}$ up $1/2$
 $\downarrow 0$
 $X \in \{0, \dots, 53\}$ up $1/2$
 $\downarrow 0$
 $X \in \{0, \dots, 53\}$ up $1/2$
 $\downarrow 0$
 $X \in \{0, \dots, 53\}$ up $1/2$
 $\downarrow 0$
 $\downarrow 0$
 $X \in \{0, \dots, 53\}$ up $1/2$
 $\downarrow 0$
 \downarrow

designing questions to maximize information gain

the game of 'submarine'

player 1 hides a submarine in one square of an 8×8 grid player 2 shoots at one square per round


designing questions to maximize information gain

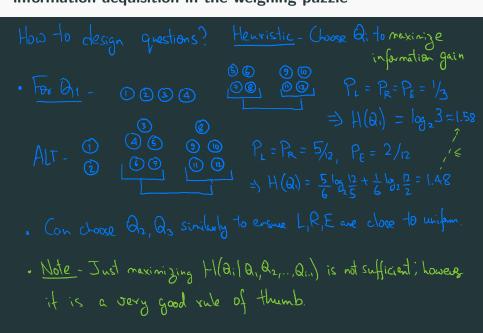
the game of 'submarine'

player 1 hides a submarine in one square of an 8×8 grid player 2 shoots at one square per round

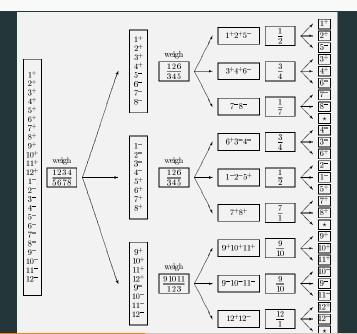
	A Image: Constraint of the second secon				
move $\#$	1	2	32	48	49
question	G3	B1	E5	F3	H3
outcome	$x = \mathtt{n}$	$x=\mathtt{n}$	$x=\mathtt{n}$	$x = \mathtt{n}$	$x = \mathbf{y}$
P(x)	$\frac{63}{64}$	$\frac{62}{63}$	$\frac{32}{33}$	$\frac{16}{17}$	$\frac{1}{16}$
h(x)	0.0227	0.0230	0.0443	0.0874	4.0
Total info.	0.0227	0.0458	1.0	2.0	6.0

Mackay's weighing puzzle

You are given 12 balls, all equal in weight except for one that is either heavier or lighter. Design a strategy to determine


which is the odd ball and whether it is heavier or lighter,

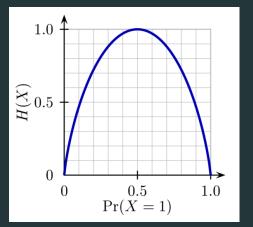
in as few uses of the balance as possible.


information acquisition in the weighing puzzle

What is the best you can do?
-
$$X = sot of all universes = \{(1,H), (2,H), \dots, (12,H), (1,L), (2,H), \dots, (12,L)\}$$

 $solving H of old hall$
=> $H(X) = \log_2(1XI) = \log_2 24$ bits (essuring)
- Each question has 3 outrones - left heavier (L), Right heavier (R) Equal(E
=) $H(Q_i) \leq \log_2(3)$ for each vesponse Q_i
- Thus H of questions veguired $\geq \left\lceil \frac{\log_2 24}{\log_2 3} \right\rceil = \frac{\log_2 27}{\log_2 3} = \frac{3}{\log_2 3}$

information acquisition in the weighing puzzle



weighing game: an optimal solution

binary entropy function

if X Bernoulli(p), then $H(X) \triangleq H_2(p) = -p \log_2(p) - (1-p) \log_2(1-p)$

- (useful formula) for any $k, N \in \mathbb{N}$, $k \leq N$:

conditional entropy

suppose $X \sim \{p_1, p_2, p_3, p_4\}$, and let $Y = \mathbb{1}_{[X \in \{a_1, a_2\}]}$; then we have $H(X) = H(Y) + (p_1 + p_2)H_2\left(\frac{p_1}{p_1 + p_2}\right) + (p_3 + p_4)H_2\left(\frac{p_3}{p_3 + p_4}\right)$

conditional entropy

suppose $X \sim \{p_1, p_2, p_3, p_4\}$, and let $Y = \mathbb{1}_{[X \in \{a_1, a_2\}]}$; then we have $H(X) = H(Y) + (p_1 + p_2)H_2\left(\frac{p_1}{p_1 + p_2}\right) + (p_3 + p_4)H_2\left(\frac{p_3}{p_3 + p_4}\right)$

conditional entropy

for any rvs X, Y: $H(X|Y) = \sum_{y \in \mathcal{Y}} p(y) H(X|Y = y)$ = $\sum_{y \in \mathcal{Y}} p(y) \sum_{x \in \mathcal{X}} p(x|y) \log_2(1/p(x|y))$

conditional entropy

conditional entropy

for any rvs X, Y:
$$H(X|Y) = \sum_{y \in \mathcal{Y}} p(y) H(X|Y = y)$$

= $\sum_{y \in \mathcal{Y}} p(y) \sum_{x \in \mathcal{X}} p(x|y) \log_2(1/p(x|y))$

the chain rule

for any rvs X, Y:

H(X, Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)