ORIE 4742 - Info Theory and Bayesian ML

Bayesian Decision Making

May 7, 2020
Sid Banerjee, ORIE, Cornell

decision theory in a nutshell

Bayesian decision theory in learning

given prior F on θ, choose 'action' $\hat{\theta}$ to minimize loss function $\mathbb{E}_{F}[L(\theta, \hat{\theta})]$

examples

- L_{0} loss: $L(\theta, \hat{\theta})=\mathbb{1}_{\{\theta \neq \hat{\theta}\}} \Rightarrow \hat{\theta_{0}}=$ mode of $F \quad\binom{G_{-}-$spanm foltering }{Covid tests }
- L_{1} loss: $L(\theta, \hat{\theta})=\|\theta-\hat{\theta}\|_{1} \Rightarrow \hat{\theta_{L_{1}}}=$ median of θ under F
- L_{2} loss: $L(\theta, \hat{\theta})=\|\theta-\hat{\theta}\|_{2} \Rightarrow \hat{\theta_{L_{2}}}=\mathbb{E}_{F}[\theta]$

decision theory in 'decision-making'

given prior F on X, choose 'action' $a \in \mathcal{A}$ to minimize loss, i.e.

$$
a^{*}=\arg \min _{a \in \mathcal{A}} \frac{\mathbb{E}_{\underset{\sim}{X \sim F}}[L(a, X)]}{\text { postorior far } X \text { given } \text { anta }}
$$

example: Bayesian optimization
Ain - max $[f[(A)]$, f un known

- Choose points $\underbrace{X_{1}, X_{2}, \ldots, X_{s}}_{\text {Samples }}$

Pick $A \in \mathbb{R}$ st max $f(A)$

- decision problem -choice of $X_{1}, X_{2}, \ldots, X_{s}, A$ (easier problem - pick $X_{s,} A$ goon X_{1}, \ldots, X_{s-1})
'Heuristic' - Dick X_{s} to maximize $\left\{\begin{array}{l}\text { Expected improvenill } \\ \text { Knowledge grabirat }\end{array}\right.$ pick A to max $\&\left[f(A) \mid X_{1}, \ldots, X_{s}\right]$

$$
\text { As an MDP: } X_{1} \rightarrow f\left(X_{1}\right) \rightarrow X_{2}=\phi\left(x_{1}, f\left(x_{1}\right)\right) \rightarrow f\left(x_{2}\right) \rightarrow \ldots \rightarrow f\left(x_{s}\right) \rightarrow A \rightarrow f(A)
$$

next, we play a game [stochastic vaviant of Nim]

- Setup: A pile of 10 toothpicks $111111 \mid 111$
- You will be playing against an oblivious random adversary (called Computer).
- A Sequence of Events in Each Iteration:
- You start first. You can take either I or 2 toothpicks from the pile.
the computer
- After you make the decision, \$ will flip a random fair coin. If the coin lands HEAD, the Computer will remove I toothpick from the pile. Otherwise, the Computer will remove 2 toothpicks.
- The game proceeds until all toothpicks are removed from the pile.
- If you end up holding the last toothpick, you win $\$ 20$. Otherwise, you get nothing.

talking of playing games (in memorium)

for more on such games, see winning ways for mathematical plays
Conway, Berlekamp, Guy

analyzing the game (sequential decision making)

divide game into rounds:

- in each round, you go first followed by COMPUTER
- In $k^{\text {th }}$ round, computer picks $X_{k} \sim \operatorname{Unif}\{1,2\}$ toothpicks

analyzing the game

divide game into rounds:

- in each round, you go first followed by COMPUTER
- In $k^{\text {th }}$ round, computer picks $X_{k} \sim \operatorname{Unif}\{1,2\}$ toothpicks

observations

- if the game starts with 1 or 2 toothpicks, then we win! (if game starts with 0 toothpicks, assume we lose.)

analyzing the game

divide game into rounds:

- in each round, you go first followed by COMPUTER
- In $k^{\text {th }}$ round, computer picks $X_{k} \sim \operatorname{Unif}\{1,2\}$ toothpicks

observations

- if the game starts with 1 or 2 toothpicks, then we win! (if game starts with 0 toothpicks, assume we lose.)
- suppose after $k-1$ rounds, game has $S_{k} \geq 3$ toothpicks left, and let S_{k+1} be number of toothpicks left when we play next:
- if we pick 1 match, then $S_{k+1}=S_{k}-1-X_{k}$
- if we pick 2 match, then $S_{k+1}=S_{k}-2-X_{k}$

analyzing the game

divide game into rounds:

- in each round, you go first followed by COMPUTER
- In $k^{\text {th }}$ round, computer picks $X_{k} \sim \operatorname{Unif}\{1,2\}$ toothpicks

observations

- if the game starts with 1 or 2 toothpicks, then we win! (if game starts with 0 toothpicks, assume we lose.)
- suppose after $k-1$ rounds, game has $S_{k} \geq 3$ toothpicks left, and let S_{k+1} be number of toothpicks left when we play next:
- if we pick 1 match, then $S_{k+1}=S_{k}-1-X_{k}$
- if we pick 2 match, then $S_{k+1}=S_{k}-2-X_{k}$
to 'solve' this game, we use dynamic programming.

analyzing the game

- if after $k-1$ rounds, game has $S_{k} \geq 3$ toothpicks, and S_{k+1} is number of toothpicks when we play next:
- If we pick 1 match, then $S_{k+1}=S_{k}-1-X_{k}$
- If we pick 2 match, then $S_{k+1}=S_{k}-2-X_{k}$ (where $X_{k} \sim \operatorname{Unif}\{1,2\}$)
let $V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks $\left(V_{\text {alue }} f_{n}\right)$

analyzing the game

- if after $k-1$ rounds, game has $S_{k} \geq 3$ toothpicks, and S_{k+1} is number of toothpicks when we play next:
- If we pick 1 match, then $S_{k+1}=S_{k}-1-X_{k}$
- If we pick 2 match, then $S_{k+1}=S_{k}-2-X_{k}$ (where $X_{k} \sim \operatorname{Unif}\{1,2\}$)
let $V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks
- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$

analyzing the game

- if after $k-1$ rounds, game has $S_{k} \geq 3$ toothpicks, and S_{k+1} is number of toothpicks when we play next:
- If we pick 1 match, then $S_{k+1}=S_{k}-1-X_{k}$
- If we pick 2 match, then $S_{k+1}=S_{k}-2-X_{k}$ (where $X_{k} \sim \operatorname{Unif}\{1,2\}$)
let $V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks
- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$
- $V(3)=\max \mathbb{E}[$ Reward $]$ if round starts with 3 toothpicks

analyzing the game

- if after $k-1$ rounds, game has $S_{k} \geq 3$ toothpicks, and S_{k+1} is number of toothpicks when we play next:
- If we pick 1 match, then $S_{k+1}=S_{k}-1-X_{k}$
- If we pick 2 match, then $S_{k+1}=S_{k}-2-X_{k}$ (where $X_{k} \sim \operatorname{Unif}\{1,2\}$)
let $V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks
- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$
- $V(3)=\max \mathbb{E}[$ Reward $]$ if round starts with 3 toothpicks

$$
=\max \{\mathbb{E}[R \text { if we pick } 1 \text { of } 3], \mathbb{E}[R \text { if we pick } 2 \text { of } 3]\}
$$

analyzing the game

- if after $k-1$ rounds, game has $S_{k} \geq 3$ toothpicks, and S_{k+1} is number of toothpicks when we play next:
- If we pick 1 match, then $S_{k+1}=S_{k}-1-X_{k}$
- If we pick 2 match, then $S_{k+1}=S_{k}-2-X_{k}$ (where $X_{k} \sim \operatorname{Unif}\{1,2\}$)
let $V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks
- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$
- $V(3)=\max \mathbb{E}[$ Reward $]$ if round starts with 3 toothpicks

$$
=\max \{\mathbb{E}[R \text { if we pick } 1 \text { of } 3], \mathbb{E}[R \text { if we pick } 2 \text { of } 3]\}
$$

$$
=\max \{\mathbb{E}[V(3-1-X)], \mathbb{E}[V(3-2-X)]\}
$$

analyzing the game

- if after $k-1$ rounds, game has $S_{k} \geq 3$ toothpicks, and S_{k+1} is number of toothpicks when we play next:
- If we pick 1 match, then $S_{k+1}=S_{k}-1-X_{k}$
- If we pick 2 match, then $S_{k+1}=S_{k}-2-X_{k}$ (where $X_{k} \sim \operatorname{Unif}\{1,2\}$)
let $V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks
- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$
- $V(3)=\max \mathbb{E}[$ Reward $]$ if round starts with 3 toothpicks

$$
=\max \{\mathbb{E}[R \text { if we pick } 1 \text { of } 3], \mathbb{E}[R \text { if we pick } 2 \text { of } 3]\}
$$

$$
=\max \{\mathbb{E}[V(3-1-X)], \mathbb{E}[V(3-2-X)]\} X=\left\{\begin{array}{l}
1 \operatorname{sp} 1 / 2 \\
2 \sim p / 2
\end{array}\right.
$$

$=\max \left\{\left(\frac{V(1)+V(0)}{2} \frac{2+0}{2}=10,\left(\frac{V(0)+V(-1)}{2}\right)\right\}=10\right.$

analyzing the game

$V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks

- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$
- $V(3)=\max \{0.5(V(1)+V(0)), 0.5(V(0)+V(-1))\}=10$
- $V(4)=\max \{0.5(V(2)+V(1)), 0.5(V(1)+V(0))\}=20$
- $V(5)=\max \{0.5(V(3)+V(2)), 0.5(V(2)+V(1))\}=20$
- $V(6)=\max \{0.5(V(4)+V(3)), 0.5(V(3)+V(2))\}=15$
- $V(7)=\max \{0.5(V(5)+V(4)), 0.5(V(4)+V(3))\}=20$
- $V(8)=\max \{0.5(V(6)+V(5)), 0.5(V(5)+V(4))\}=20$
- $V(9)=\max \{0.5(V(7)+V(6)), 0.5(V(6)+V(5))\}=17.5$
- $V(10)=\max \{0.5(V(8)+V(7)), 0.5(V(7)+V(6))\}=20$

analyzing the game

$V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks

- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$
- $V(3)=\max \{0.5(V(1)+V(0)), 0.5(V(0)+V(-1))\}=10$
- $V(4)=\max \{0.5(V(2)+V(1)), 0.5(V(1)+V(0))\}=20$
- $V(5)=\max \{0.5(V(3)+V(2)), 0.5(V(2)+V(1))\}=20$
- $V(6)=\max \{0.5(V(4)+V(3)), 0.5(V(3)+V(2))\}=15$
- $V(7)=\max \{0.5(V(5)+V(4)), 0.5(V(4)+V(3))\}=20$
- $V(8)=\max \{0.5(V(6)+V(5)), 0.5(V(5)+V(4))\}=20$
- $V(9)=\max \{0.5(V(7)+V(6)), 0.5(V(6)+V(5))\}=17.5$
- $V(10)=\max \{0.5(V(8)+V(7)), 0.5(V(7)+V(6))\}=20$
optimal policy: move to nearest multiple of 3
we always win if $x \neq 0 \bmod (3)$

sequential decision making

Markov decision process (MDP)

general paradigm for sequential decision making
problem: $\max _{a}$:"Actions" $\mathbb{E}_{X}\left[f\left(X_{1}, a_{1}, X_{2}, a_{2}, \ldots, X_{T}, a_{T}\right)\right]$

main concepts

- state: S - summary of history
- value function: $V(\cdot)$ - 'value-to-go' for given state
- Bellman equation (or dynamic program equation): $V\left(S_{t}\right)=\max _{a_{t} \text { tactions }} \mathbb{E}\left[R_{t}\left(S_{t}, a_{t}\right)+V\left(S_{t+1}\left(S_{t}, a_{t}\right)\right)\right]$
optimal policy: pick any a_{t} that is a maximizer of above eqn

Markov chain vs. Markov decision process

'Solution' to an MDP
$T=\{1,2, \ldots, T\}, \quad S_{1} \in\{1,2, \ldots, 5\}$
$V_{t}(s) t 12 ; \cdots$

for state sat tine compile to 1 mime
stove $-\frac{V_{t}(s)}{a^{\prime}(s)}={\underset{m e x}{*}}_{\varepsilon_{r^{n}}}$

$$
a_{t}^{\psi}(s)=\operatorname{ag}_{a}^{m a x}\left(E\left[R_{1}\left(s_{i}, q\right)+v(\ldots)\right)\right.
$$

(finite horizon) MDP

sequential decision making: $\max _{\text {a: "Actions" }} \mathbb{E}_{X}[f(a, X)]$

main concepts

- horizon: T - discrete 'decision periods' $t=\{1,2, \ldots, T\}$

(finite horizon) MDP

sequential decision making: $\max _{\text {a:"Actions" }} \mathbb{E}_{X}[f(a, X)]$

main concepts

- horizon: T - discrete 'decision periods' $t=\{1,2, \ldots, T\}$
- state: $s_{t} \in \mathcal{S}_{t}$ - concise summary of history

(finite horizon) MDP

sequential decision making: $\max _{\text {a: "Actions" }} \mathbb{E}_{X}[f(a, X)]$

main concepts

- horizon: T - discrete 'decision periods' $t=\{1,2, \ldots, T\}$
- state: $s_{t} \in \mathcal{S}_{t}$ - concise summary of history
- action: $a_{t} \in \mathcal{A}\left(s_{t}\right)$ - allowed set actions in each period

(finite horizon) MDP

sequential decision making: $\max _{\text {a: "Actions" }} \mathbb{E}_{X}[f(a, X)]$

main concepts

- horizon: T - discrete 'decision periods' $t=\{1,2, \ldots, T\}$
- state: $s_{t} \in \mathcal{S}_{t}$ - concise summary of history
- action: $a_{t} \in \mathcal{A}\left(s_{t}\right)$ - allowed set actions in each period
- randomness/disturbance: X_{t} - determines state transition probability $p\left(s_{t+1} \mid s_{t}, a_{t}\right)\left(\right.$ or $\left.s_{t+1}=f\left(s_{t}, a_{t}, X_{t}\right)\right)$

(finite horizon) MDP

sequential decision making: $\max _{a: " A c t i o n s " ~} \mathbb{E}_{X}[f(a, X)]$

main concepts

- horizon: T - discrete 'decision periods' $t=\{1,2, \ldots, T\}$
- state: $s_{t} \in \mathcal{S}_{t}$ - concise summary of history
- action: $a_{t} \in \mathcal{A}\left(s_{t}\right)$ - allowed set actions in each period
- randomness/disturbance: X_{t} - determines state transition probability $p\left(s_{t+1} \mid s_{t}, a_{t}\right)\left(\right.$ or $\left.s_{t+1}=f\left(s_{t}, a_{t}, X_{t}\right)\right)$
- Reward: $R_{t}\left(s_{t}, a_{t}, X_{t}\right)\left(\right.$ or $\left.R_{t}\left(s_{t+1} \mid s_{t}, a_{t}\right)\right)$

‘solving’ an MDP

dynamic programming

- value function: $V_{t}(s) \triangleq$ maximum expected expected reward over periods $\{t, t+1, \ldots, T\}$ starting from state s
- terminal conditions $V_{T}(s)$ for all s
- Bellman equation (or dynamic program equation):
$V_{t}\left(S_{t}\right)=\max _{a_{t}: \text { actions }} \mathbb{E}\left[R_{t}\left(S_{t}, a_{t}\right)+V_{t+1}\left(S_{t+1}\left(S_{t}, a_{t}\right)\right)\right]$
optimal policy: pick any a_{t} that is a maximizer of above eqn
example: distributing food to soup kitchens
- mobile food pantry has C meals to distribute between H soup kitchens
- kitchen i has demand $D_{i} \sim F_{i}\left(F_{i}\right.$ is known $)$
- can choose to give $X_{i} \geq 0$ units of food
- objective: maximize sum of log fill ratios $\sum_{i=1}^{H} \log \left(\left(\frac{X_{i}}{D_{i}}\right)_{-}\right)_{-m i n}\left(\frac{x_{i}}{D_{i}}, 1\right)$
- Check.

$$
\begin{aligned}
& \text { If } D_{1}=D_{2}=\ldots=D_{n}>C / H \\
& \text { (proportional fair objedi:ee') Mach social } \\
& \text { welfare } \\
& \text { optional } X_{i} \equiv C / H
\end{aligned}
$$

State. $S_{t}=C_{t} \equiv$ Amount of food left for $\{t, t+1, \ldots, H\}$
$A_{t}=X_{t}$: Anent " " given to locations

$$
V_{t}\left(C_{t}\right)=\max _{x_{t}: x_{t} \in\left[0, c_{1}\right]}\left[\left[\log \left(\operatorname{mid} \left\lvert\, \frac{x_{t}, 1}{D_{t}}\right.\right)\right)+V_{t \cdot(}\left(C_{t}-x_{t}\right)\right]
$$

example: distributing food to soup kitchens
'Solution' - Threshold
θ_{t} sit $\quad X_{t}=\min \left(D_{t}, C_{t}, \theta_{t}\right)$

- mobile food pantry has C_{j} cans of item $j \in\{1,2, \ldots, d\}$ to distribute between H soup kitchens
- kitchen i has demand $D_{i j} \sim F_{i}$ for item j
- can choose to give $X_{i j} \geq 0$ units of each item
- objective: maximize product of utilities $\prod_{i=1}^{H}\left(U_{i}\left(\sum_{j} v_{i j} \frac{x_{i j}}{D_{i j}}\right)\right)$

‘solving' real MDPs
- exact solution via DP
- newsvendor problem, selling single item ('Convexity')
- 'index' policies (greedy policies). Gittin's index
- approximate methods (Thompson sampling)
- Expected improvement / KG for Bayer Opt
- iterative methods (value /policy iteration, Q learning)
- approximate $V(s)$ (or $\left.a_{t}^{\dagger}(s)\right)$ via some iteration
- Q-learning (more gmerally, $R L$) - Solve the MDP approx ${ }^{\text {y }}$ without knowing R, transitions'
example: the multi-armed bandit problem
- K actions, H horizon
- action $a \in[K]$ has reward $R(a)=\operatorname{Ber}\left(\theta_{a}\right)$, with unknown θ
- aim: maximize $\sum_{t=1}^{H} R\left(A_{t}\right)$

Q: Hf you knows $\left\{\theta_{a}\right\}$, what is
A: pick highest $\dot{\theta}_{a}$
Exploration vs. Exploitation
Examples of 'bad' policies- Equal play, fix arm

- play each arm n times, for remaining $H-3 n$, pick arm with highest MLE for θ_{u}

example: the multi-armed bandit problem
Idea_ Assume $\partial_{a} \sim \operatorname{Beta}(1,1)$
- Choose At via some rule

Update posterior, $\theta_{a} \sim \operatorname{Beta}\left(1+S_{a}, 1+F_{a}\right)$
Fact 1 - If $H \sim \operatorname{Geom}(\gamma)$ then optimal solution for the MDP is kunon' (Gittin's index)
Fact 2 - For fixed H, if we sample $\theta_{a t}$ Ben ($1+S_{1+[7]}^{1+F i t)}$ Thompson and pick $A_{t}=\operatorname{angmax}\left\{\theta_{t}\right\} \Rightarrow E[R e g a t]=a k \log H$ sampling

