ORIE 4742 - Info Theory and Bayesian ML

Lecture 1: Probability Review

January 23, 2020
Sid Banerjee, ORIE, Cornell

La théorie des probabitités n'est, au fond, que le bon sens reduit au calcul

"probability theory is common sense reduced to calculation"
not quite...

Bertrand's problem
given an equilateral triangle inscribed in a circle, and a random chord, what is the probability the chord is longer than the side of the triangle?

Pick random endpoint (fixing ane col)

$$
\mathbb{P}[\text { chad } \geqslant \text { side }]=1 / 3
$$

not quite. . .

Bertrand's problem paradox
given an equilateral triangle inscribed in a circle, and a random chord, what is the probability the chord is longer than the side of the triangle?

pick any rodius and random conter

$$
\mathbb{P}[\text { cort }] \text { sode }]=1 / 2
$$

not quite. . .

Bertrand's problem

given an equilateral triangle inscribed in a circle, and a random chord, what is the probability the chord is longer than the side of the triangle?

pick random counter in (1)

$$
\mathbb{P}[\text { chat }>\text { cid }]=1 / 4
$$

not quite. . .

Bertrand's problem

given an equilateral triangle inscribed in a circle, and a random chord, what is the probability the chord is longer than the side of the triangle?

$p=1 / 3$

$p=1 / 2$

$$
p=1 / \Delta
$$

not quite. . .

Bertrand's problem

given an equilateral triangle inscribed in a circle, and a random chord, what is the probability the chord is longer than the side of the triangle?

the moral (for this course. . . and for life)
be very precise about defining experiments/random variables/distributions
also see Wikipedia article on Bertrand's paradox

the essentials

reading assignment

Murphy: chapter 2, sections 2.1-2.3, 2.4.1, 2.6-2.8
Mackay: chapter 2 (less formal, but more fun!)
things you must know and understand

- random variables (rv) and cumulative distribution functions (cdf)
- conditional probabilities and Bayes rule
- expectation and variance of random variables
- independent and mutually exclusive events
- basic inequalities: union bound, Jensen, Markov/Chebyshev
- common rvs (Bernoulli, Binomial, Geometric, Gaussian (Normal))
random variables and cdf
sample space, random variable
random experiment: outcome cannot be predicted in advance.
sample space Ω : the set of all possible outcomes of the experiment
random variable: any function from $\Omega \rightarrow \mathbb{R}\left(\right.$ random vector: $\left.\Omega \rightarrow \mathbb{R}^{d}\right)$
example: flip two coins, and let $X=\#$ of heads $(\mathbb{P}[$ heads $]=h)$

$$
\Omega=\left\{H H^{\prime}, H T: T H ; T T\right\}
$$

prob. $h^{21} h(1-h)^{\mid}(1-h) h \mid(1-h)^{2}$

$$
x: 2: 1: 1: 0
$$

cumulative distribution function

always try to think of probability and rvs through the cdf
for any rv X (discrete or continuous), its probability distribution is defined by its cumulative distribution function (cdf)

$$
F(x)=\quad \prod[x \leqslant x]
$$

using the cdf we can compute probabilities

$$
\mathbb{P}[a<x \leq b]=\quad F(b)-F(a)
$$

visualizing a cdf

The plot of a cdf obeys 3 essential rules + one convention
Example: consider an $r v \in[-2,5]$ with a jumps at 1 and 2

1) $F(x) \in[0,1]$, 2) $\lim _{x \rightarrow-\infty} F(x)=0, \lim _{x \rightarrow a} F(x)=1$
2) $F(x)$ is non-decreasing

discrete random variables

for a discrete random variable taking values in \mathbb{N}, another characterization is its probability mass function (pmf) p(•)

$$
p(x)=\mathbb{P}[X=x]
$$

- any pmf $p(x)$ has the following properties:

$$
p(x) \in[0,1] \forall x \in \mathbb{N} \quad, \quad \sum_{x \in \mathbb{N}} p(x)=1
$$

- the pmf $p(\cdot)$ is related to the $\operatorname{cdf} F(\cdot)$ as

$$
\begin{aligned}
& F(x)=\quad \sum y \leq x P(y) \\
& p(x)=\quad F(x)-F(x-1)
\end{aligned}
$$

continuous random variables

for a continuous random variable taking values in \mathbb{R}, another characterization is its probability density function (pdf) $f(\cdot)$

$$
\mathbb{P}[a<X \leq b]=\int_{a}^{b} f(x) d x
$$

- any pdf $f(x)$ has the following properties:

$$
f(x) \geq 0 \forall x \in \mathbb{R} \quad, \quad \int_{-\infty}^{\infty} f(x) d x=1
$$

- ALERT!! It is not true that $f(x)=\mathbb{P}[X=x]$. In fact, for any x,

$$
\mathbb{P}[X=x]=
$$

continuous random variables
thus, for continuous $\mathrm{rv} X$ with $\operatorname{pdf} f(\cdot)$ and $\operatorname{cdf} F(\cdot)$, we have

$$
\mathbb{P}[a<X \leq b]=F(b)-F(a)=\int_{a}^{b} f(x) d x
$$

now we can go from one function to the other as

$$
\begin{aligned}
& F(x)=\int_{-d}^{x} f(x) d x \\
& f(x)=\frac{d}{d x} F(x) \quad \text { (assuming differentiable...) }
\end{aligned}
$$

Bayesian basics

marginals and conditionals

let X and Y be discrete rvs taking values in \mathbb{N}. denote the joint pmf:

$$
p_{X Y}(x, y)=\mathbb{P}[X=x, Y=y]
$$

marginalization: computing individual pmfs from joint pmfs as

$$
p_{X}(x)=\sum_{y \in \mathbb{N}} p_{X Y}(x, y) \quad p_{Y}(y)=\sum_{x \in \mathbb{N}} p_{X Y}(x, y)
$$

conditioning: pmf of X given $Y=y$ (with $\left.p_{Y}(y)>0\right)$ defined as:

$$
\mathbb{P}[X=x \mid Y=y] \triangleq p_{X \mid Y}(x \mid y)=\frac{p_{X Y}(x, y)}{p_{Y}(y)}
$$

more generally, can define $\mathbb{P}[X \in \mathcal{A} \mid Y \in \mathcal{B}]$ for sets $\mathcal{A}, \mathcal{B} \in \mathbb{N}$ see also this visual demonstration

the basic 'rules' of Bayesian inference

let X and Y be discrete rvs taking values in \mathbb{N}, with joint pmf $p(x, y)$

product rule

for $x, y \in \mathbb{N}$, we have: $p_{X Y}(x, y)=p_{X}(x) p_{Y \mid X}(y \mid x)=p_{Y}(y) p_{X \mid Y}(x \mid y)$
sum rule
for $x \in \mathbb{N}$, we have: $p_{X}(x)=\sum_{y \in \mathbb{N}} p_{X \mid Y}(x \mid y) p_{Y}(y)$
and most importantly!
Bayes rule
for any $x, y \in \mathbb{N}$, we have:

$$
p_{X \mid Y}(x \mid y)=\frac{p_{X}(x) p_{Y \mid X}(y \mid x)}{\sum_{X \in \mathbb{N}} p_{Y \mid X}(y \mid x) p_{X}(x)}
$$

see also this video for an intuitive take on Bayes rule

Bayesian inference: example

Mackay's three cards
We have three cards $C 1, C 2, C 3$, with $C 1$ having faces
-Blue, C2 having faces Blue-Blue; and C3 having faces

A card is randomly drawn and placed on a table - its upper face is What is the colour of its lower face?

Bayesian inference: example

$C 1=-$ Blue, $C 2=$ Blue-Blue; $C 3=-$ A card is randomly drawn, and has upper face . What is the colour of its lower face?

Let $X \in\{C 1, C 2, C 3\}$ be the identity of drawn card, $Y_{b} \in\{b, r\}$ be the color of bottom face, and $Y_{t} \in\{b, r\}$ be the color of top face. Then:

$$
\begin{aligned}
\mathbb{P}\left[Y_{b}=b \mid Y_{t}=b\right] & =\mathbb{P}\left[X=C 2 \mid Y_{t}=b\right]=\frac{\mathbb{P}\left[Y_{t}=b \mid X=C 2\right] \mathbb{P}[X=C 2]}{\mathbb{P}\left[Y_{t}=b\right]} \\
& =\frac{1 \times(1 / 3)}{(1 / 2) \times(1 / 3)+1 \times(1 / 3)+0 \times(1 / 3)}=2 / 3
\end{aligned}
$$

always write down the probability of everything

Bayesian inference: example

Eddy's mammogram problem

The probability a woman at age 40 has breast cancer is 0.01 . A mammogram detects the disease 80% of the time, but also mis-detects the disease in healthy patients 9.6% of the time. If a woman at age 40 has a positive mammogram test, what is the probability she has breast cancer?

Bayesian inference: example

Eddy's mammogram problem

The probability a woman at age 40 has breast cancer is 0.01 . A
mammogram detects the disease 80% of the time, but also mis-detects the disease in healthy patients 9.6% of the time. If a woman at age 40 has a positive mammogram test, what is the probability she has breast cancer?
The natural frequency viewpoint.

- Consider population of 1000

10 have cancer, 990 do not

- Of the 10 cancer patients, 8 have positive tests
- Of the 990 won patients, ~ 95 have false positive tests

$\Rightarrow \mathbb{P}[$ cancer \mid Postie test $]=\frac{8}{103}=7.76 \%$
expectations and independence
expected value (mean, average)
let X be a random variable, and $g(\cdot)$ be any real-valued function
If X is a discrete rv with $\Omega=\mathbb{Z}$ and $\operatorname{pmf} p(\cdot)$, then

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{x \in \mathbb{N}} x p(x) \\
\mathbb{E}[g(X)] & =\sum_{x \in \mathbb{N}} g(x) p(x)
\end{aligned}
$$

If X is a continuous $r v$ with $\Omega=\mathbb{R}$ and $\operatorname{pdf} f(\cdot)$, then

$$
\begin{aligned}
\mathbb{E}[X] & =\quad \int_{-\infty}^{\infty} x f(x) d x \\
\mathbb{E}[g(X)] & =\quad \int_{-\infty}^{\infty} g(x) f(x) d x
\end{aligned}
$$

Variance and Standard Deviation

Definition: $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] \quad \sigma(X)=\sqrt{\operatorname{Var}(X)}$
(More useful formula for computing variance)

$$
\operatorname{Var}(x)=\mathbb{E}\left[x^{2}\right]-(\mathbb{E}[x])^{2}
$$

Pf $-\mathbb{E}\left[(x-\mathbb{E}[x])^{2}\right]=\mathbb{E}\left[x^{2}-2 x \mathbb{E}[x]+\left(\mathbb{E}[x)^{2}\right]\right.$

$$
=E\left[x^{2}\right]-2 E[x]^{2}+E[x]^{2}
$$

(linearity of expectation - see bolos)

independence

what do we mean by "random variables X and Y are independent"? (denoted as $X \Perp Y$; similarly, $X \not \Perp Y$ for 'not independent') intuitive definition: knowing X gives no information about Y formal definition: $\forall x, y \in \mathbb{N}, \quad P_{x y}(x, y)=P_{x}(x) P_{y}(y)$

One measure of independence between rv is their covariance

$$
\begin{array}{rlr}
\operatorname{Cov}(X, Y) & =\mathbb{E}[(X-\mathbb{E} X)(Y-\mathbb{E} Y)] \quad \text { (formal definition) } \\
& =\mathbb{E}[x Y]-\mathbb{E}[X] \mathbb{E}[Y] \quad \text { (for computing) }
\end{array}
$$

independence and covariance

how are independence and covariance related?

- X and Y are independent, then they are uncorrelated in notation: $X \Perp Y \Rightarrow \operatorname{Cov}(X, Y)=0$
- however, uncorrelated rvs can be dependent in notation: $\operatorname{Cov}(X, Y)=0 \Rightarrow X \Perp Y$
- $\operatorname{Cov}(X, Y)=0 \Rightarrow X \Perp Y$ only for multivariate Gaussian rv (this though is confusing; see this Wikipedia article)

linearity of expectation

for any rvs X and Y, and any constants $a, b \in \mathbb{R}$

$$
\mathbb{E}[a X+b Y]=a \mathbb{E}[X]+b \mathbb{E}[Y]
$$

note 1: no assumptions! (in particular, does not need independence)
linearity of expectation
for any rvs X and Y, and any constants $a, b \in \mathbb{R}$

$$
\mathbb{E}[a X+b Y]=a \mathbb{E}[X]+b \mathbb{E}[Y]
$$

note 1: no assumptions! (in particular, does not need independence)
note 2: does not hold for variance in general
for general X, Y

$$
\begin{aligned}
\operatorname{Var}(a X+b Y)=\mathbb{E}\left[(a X+b y)^{2}\right]-(a E X+b E Y)^{2}=a^{2} \operatorname{Var}(X) & +b^{2} \operatorname{Var}(Y) \\
& +2 a b \operatorname{Cov}(X, Y)
\end{aligned}
$$

$$
\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(y)
$$

using linearity of expectation

the TAs get lazy and distribute graded assignments among n students uniformly at random. On average, how many students get their own hw?

using linearity of expectation

the TAs get lazy and distribute graded assignments among n students uniformly at random. On average, how many students get their own hw?

Let $X_{i}=\mathbb{1}_{\text {[student } \mathrm{i}}$ gets her hw] \quad (indicator rv)
$N=$ number of students who get their own hw $=\sum_{i=1}^{10} X_{i}$ then we have:

$$
\begin{aligned}
\mathbb{E}[N] & =\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right] \\
& =\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right] \\
& =\sum_{i=1}^{n} \mathbb{P}\left[X_{i}=1\right]=\sum_{i=1}^{n} \frac{1}{n}=1
\end{aligned}
$$

useful probability inequalities

inequality 1: The Union Bound

Let $A_{1}, A_{2}, \ldots, A_{k}$ be events. Then

$$
P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{k}\right) \leq\left(P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots+P\left(A_{k}\right)\right)
$$

inequality 2: Jensen's Inequality

If X is a random variable and f is a convex function, then

$$
\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])
$$

Proof sketch (plus way to remember)

inequality 3: Markov and Chebyshev's inequalities

Markov's inequality
For any rv . $X \geq 0$ with mean $\mathbb{E}[X]$, and for any $k>0$,

$$
\mathbb{P}[X \geq k] \leq \frac{\mathbb{E}[X]}{k}
$$

Chebyshev's inequality
For any rv. X with mean $\mathbb{E}[X]$, finite variance $\sigma^{2}>0$, and for any $k>0$,

$$
\mathbb{P}[|X-\mathbb{E}[X]| \geq k \sigma] \leq \frac{1}{k^{2}}
$$

quantifying information content

Mackay's weighing puzzle

The weighing problem

You are given 12 balls, all equal in weight except for one that is either heavier or lighter.
Design a strategy to determine
which is the odd ball
and whether it is heavier or lighter,
in as few uses of the balance as possible.

