

ORIE 4742 - Info Theory and Bayesian ML

Bayesian Networks

April 9, 2020

Sid Banerjee, ORIE, Cornell

From- Ch8, PRML bý Chris Bishop

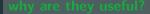
probabilistic graphical models

graphical representation of complex probability distributions

types of graphical models

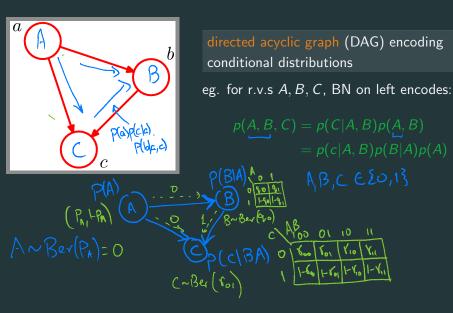
· E random variable

BayesNets: directed acyclic graphs Markov random fields: undirected graphs factor graphs: bipartite graphs

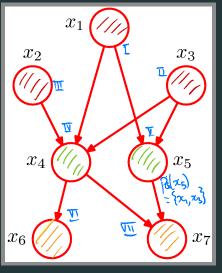


- visualizing helps in design of probabilistic models
- complex inference/learning calculations \rightarrow simpler graph operations
- gives insight into properties of model: conditional independence, causal relationships

BayesNets



BayesNets

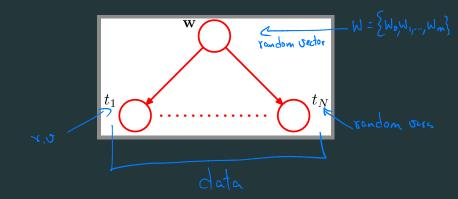


 $p(x_3), p(x_2) p(x_4 | x_1 x_2, x_3)$ P(x5 | x1, x3) P(x6 | x4) · Any DAG has a topological ordering · For any x, Pa(x) = privents of x · p(Uxi) = TT p(xi/pa(xi))

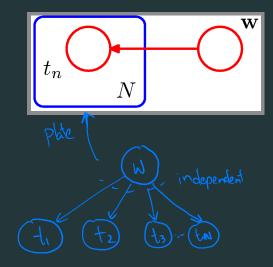
example: (Bayesian) regression

$$\frac{\ln p_{1}t}{\ln s_{1}t_{1}} = \frac{1}{2} \left[\frac{1}{2} \right] \left[\frac{1$$

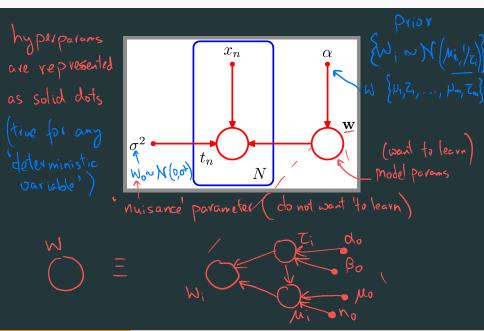
regression: basic BayesNet



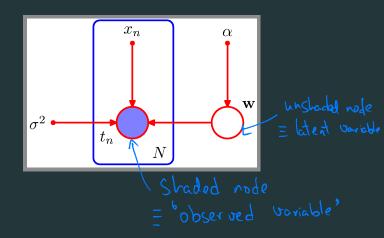
regression: plate notation



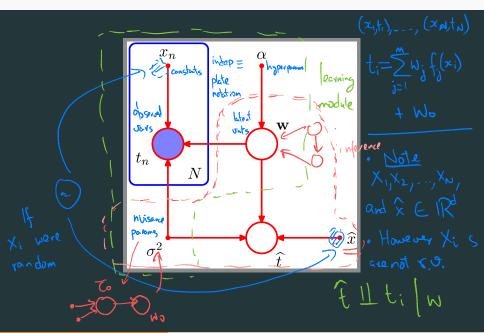
regression: inputs and hyperparameters

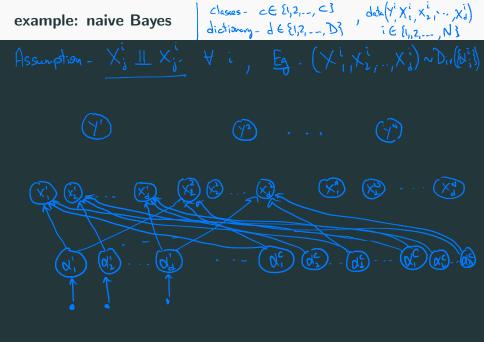


regression: learning

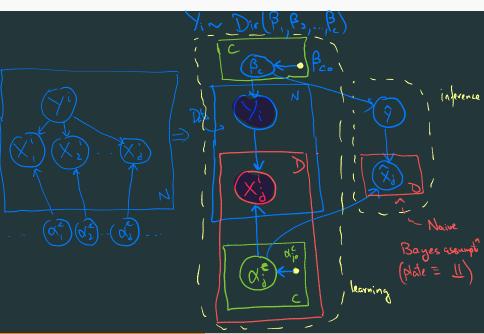


regression: prediction

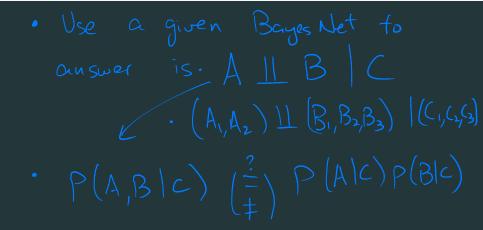




example: naive Bayes

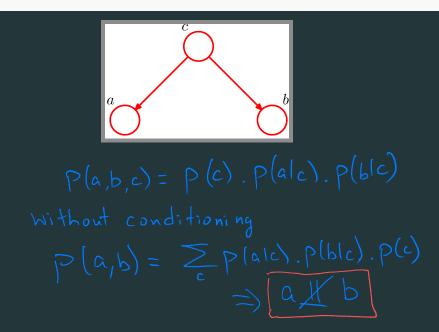


conditional independence

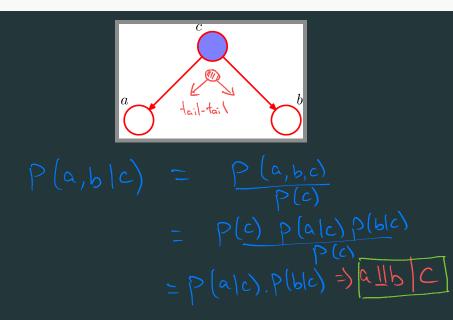


conditional independence

conditional independence: splits



conditional independence: splits



conditional independence: chains

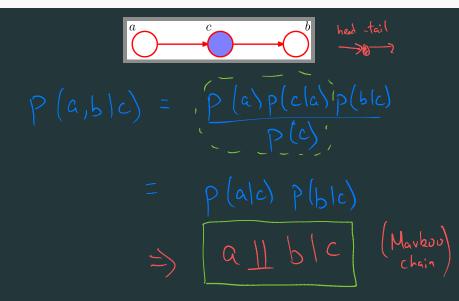
$$p(a,b,c) = p(a) \cdot p(c|a) \cdot p(b|c)$$

$$p(a,b) = p(a) \cdot p(c|a) \cdot p(b|c) + p(a) \cdot p(b)$$

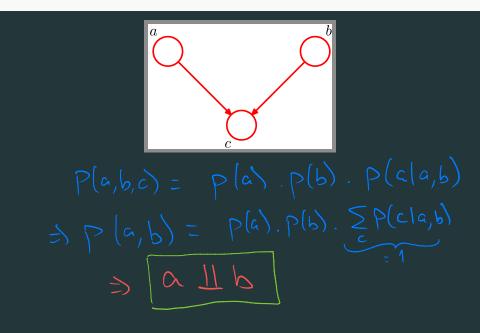
$$= p(a + b) \cdot p(b|c) + p(a) \cdot p(b)$$

$$= p(a + b) \cdot p(b|c) + p(a) \cdot p(b)$$

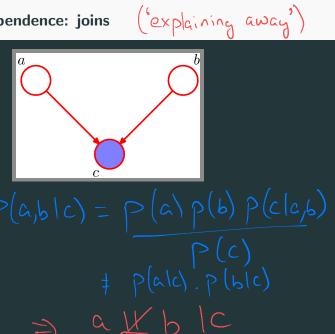
conditional independence: chains



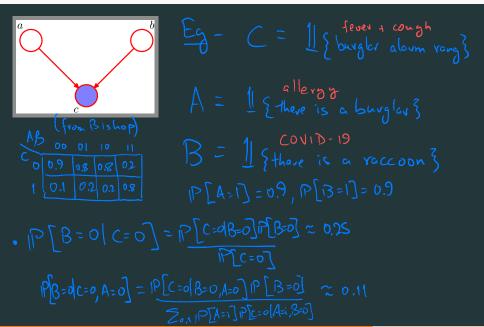
conditional independence: joins



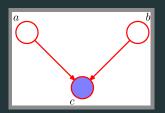
conditional independence: joins



'explaining away'



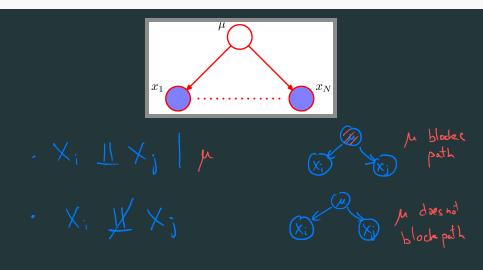
'explaining away'



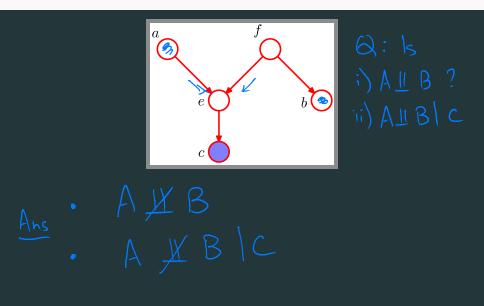
d-separation

AOL- CIGE OB) Sen E

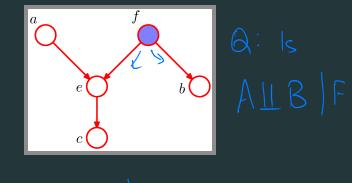
d-separation: i.i.d. data



d-separation: example



d-separation: example



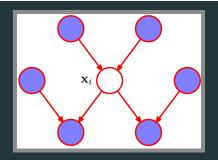
d-separation: model parameters

example: naive Bayes

example: naive Bayes

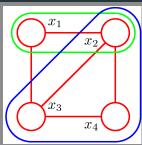
d-separation: model parameters

the Markov blanket



Markov random fields

cliques and potentials



conditional independence and Markov blanket in MRF

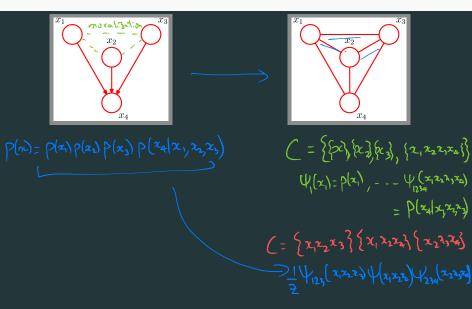
 $C = \left\{ \{x_1, x_2\} \{x_1, x_4\} \{x_2, x_4, x_3\} \right\}$ $\begin{array}{c} & & P(x_{1}, x_{2}, x_{3}, x_{4}) = \frac{1}{2} \Psi_{12}(x_{1}, x_{3}) \Psi_{14}(x_{1}, x_{4}), \\ & & \\$

Conditional in dep (=) separation
 Q: X311 X1 | X4, X2?
 Yes as (X2, X4) Separate X1al X3

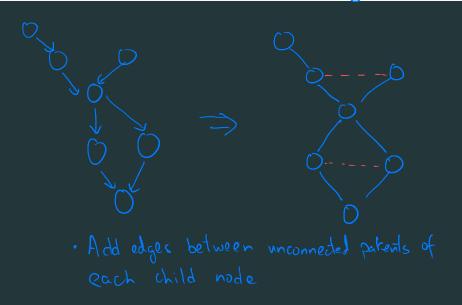
BayesNet vs MRF - Markow Chain

$$x_1 \xrightarrow{x_2} \cdots \xrightarrow{x_{N-1}} x_N \xrightarrow{x_1} x_2 \xrightarrow{x_{N-1}} x_N$$

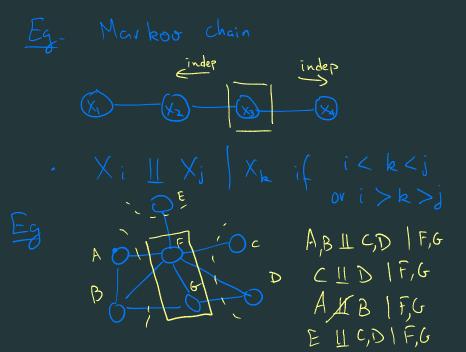
BayesNet vs MRF

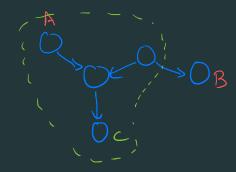


converting BayesNets to MRFs - moralization



d-separation and moralization





· Unconditional

