ORIE 4742 - Info Theory and Bayesian ML

Chapter 6: Intro to Bayesian Statistics

Februaru 20, 2020
Sid Banerjee, ORIE, Cornell

Bayesian basics

marginals and conditionals

let X and Y be discrete rvs taking values in \mathbb{N}. denote the joint pmf:

$$
p_{X Y}(x, y)=\mathbb{P}[X=x, Y=y]
$$

marginalization: computing individual pmfs from joint pmfs as

$$
p_{X}(x)=\sum_{y \in \mathbb{N}} p_{X Y}(x, y) \quad p_{Y}(y)=\sum_{x \in \mathbb{N}} p_{X Y}(x, y)
$$

conditioning: pmf of X given $Y=y$ (with $\left.p_{Y}(y)>0\right)$ defined as:

$$
\mathbb{P}[X=x \mid Y=y] \triangleq p_{X \mid Y}(x \mid y)=\frac{p_{X Y}(x, y)}{p_{Y}(y)}
$$

more generally, can define $\mathbb{P}[X \in \mathcal{A} \mid Y \in \mathcal{B}]$ for sets $\mathcal{A}, \mathcal{B} \in \mathbb{N}$ see also this visual demonstration

the basic 'rules' of Bayesian inference

let X and Y be discrete rvs taking values in \mathbb{N}, with joint pmf $p(x, y)$

product rule

for $x, y \in \mathbb{N}$, we have: $p_{X Y}(x, y)=p_{X}(x) p_{Y \mid X}(y \mid x)=p_{Y}(y) p_{X \mid Y}(x \mid y)$
sum rule
for $x \in \mathbb{N}$, we have: $p_{X}(x)=\sum_{y \in \mathbb{N}} p_{X \mid Y}(x \mid y) p_{Y}(y)$
and most importantly!
Bayes rule
for any $x, y \in \mathbb{N}$, we have:

$$
p_{X \mid Y}(x \mid y)=\frac{p_{X}(x) p_{Y \mid X}(y \mid x)}{\sum_{X \in \mathbb{N}} p_{Y \mid X}(y \mid x) p_{X}(x)}
$$

see also this video for an intuitive take on Bayes rule
fundamental principle of Bayesian statistics

- assume the world arises via an underlying generative model \mathcal{M}
- use random variables to model all unknown parameters θ
- incorporate all that is known by conditioning on data D
- use Bayes rule to update prior beliefs into posterior beliefs

$$
\underbrace{p(\theta \mid D, \mathcal{M})}_{\text {Posterior }} \propto \underbrace{p(\theta \mid \mathcal{M}) p(\underbrace{D \mid \theta, \mathcal{M})}_{\text {likelihood }}}_{\text {Prior }}
$$

Physics - Newtonian dynamics, relativity
Note Bayesian ML DOES Not believe the model parameters are random

pros and cons

in praise of Bayes

- conceptually simple and easy to interpret
- works well with small sample sizes and overparametrized models
- can handle all questions of interest: no need for different estimators, hypothesis testing, etc.

why isn't everybody Bayesian

- they need priors (subjectivity...)
- they may be more computationally expensive: computing normalization constant and expectations, and updating priors, may be difficult
basics of Bayesian inference

the likelihood principle

given model \mathcal{M} with parameters Θ, and data D, we define:

- the prior $p(\Theta \mid \mathcal{M})$: what you believe before you see data
- the posterior $p(\Theta \mid D, \mathcal{M})$: what you believe after you see data
- the marginal likelihood or evidence $p(D \mid \mathcal{M})$: how probable is the data under our prior and model
these three are probability distributions; the next is not
- the likelihood: $\mathcal{L}(\Theta) \triangleq p(D \mid \mathcal{M}, 0)$: function of Θ summarizing data

the likelihood principle

given model \mathcal{M}, all evidence in data D relevant to parameters Θ is contained in the likelihood function $\mathcal{L}(\Theta)$
this is not without controversy; see Wikipedia article

REMEMBER THIS!!

given model \mathcal{M} with parameters Θ, and data D, we define:

- the prior $p(\Theta \mid \mathcal{M})$: what you believe before you see data
- the posterior $p(\Theta \mid D, \mathcal{M})$: what you believe after you see data
- the marginal likelihood or evidence $p(D \mid \mathcal{M})$: how probable is the data under our prior and model
- the likelihood: $\mathcal{L}(\Theta) \triangleq p(D \mid \mathcal{M}, 0)$: function of Θ summarizing the data
the fundamental formula of Bayesian statistics

$$
\text { posterior } \left.=\frac{\text { likelihood } \times \text { prior }}{\text { evidence }} \right\rvert\, P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)}
$$

also see: Sir David Spiegelhalter on Bayes vs. Fisher

Notes

- For discrete $\theta, p(\theta \mid D), p(\theta)$ ave pmfs For continuous $\theta, P(\theta \mid D)=f(\theta \mid \Delta), p(\theta)=f(\theta)$ (use poofs)
- Sinibaly for discrete us continuous data (for $P(D)$)
- Likelihood $P(D \mid \theta)$ is not a prob distr. It is a fr of θ that is parameterized by the data.
- If D is contimous, use $f(D \mid \theta)$ - Note this is still some th of θ.
example: the mystery Bernoulli rv
- data $D=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\} \in\{0,1\}^{n}$
- model $\mathcal{M}: X_{i}$ are generated i.i.d. from a $\operatorname{Ber}(\theta)$ distribution
fix θ; what is $\mathbb{P}\left[\beta_{a} \mid \mathcal{M}\right]$ for any $i \in[n]$? $\quad N_{1}=\#$ of $\mid \mathrm{s}, N_{0}=\#$ of O_{s}

$$
\mathbb{P}\left[X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n} \mid \mathcal{M}, \theta\right]=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{1-x_{i}}=\theta^{N_{1}}(1-\theta)^{N_{0}}
$$

$x_{i} \in\{0,1\}$
let $H=\#$ of ' 1 's in $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$; what is $\mathbb{P}[H \mid \mathcal{M}, 0]$?

$$
\mathbb{P}[H=h \mid M, \theta]=\binom{n}{n} \theta^{n}(1-\theta)^{n-h}
$$

the Bernoulli likelihood function

- data $D=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\} \in\{0,1\}^{n}$
- model $\mathcal{M}: X_{i}$ are generated i.i.d. from a $\operatorname{Ber}(\theta)$ distribution
likelihood: $\mathcal{L}(\Theta) \triangleq p(D \mid \mathcal{M}, \theta)$: function of Θ summarizing the data
\qquad Bemoull:
Likelihood
Function
- Note - $\mathcal{L}(\theta)$ is NoT a distribution

$$
\left(i e, \int_{0}^{1} \mathcal{L}(\theta) d \theta \neq 1\right)
$$

log-likelihood, sufficient statistics, MLE

$$
\begin{aligned}
& l(\theta)=\log \mathcal{L}(\theta) \\
& \frac{d}{d \theta}(\theta)=\frac{N_{1}}{\theta}-\frac{N_{0}}{1-\theta} \\
& \Rightarrow \theta^{M E}=N_{1} / N_{1+}+N_{0} \\
& \left(\text { For Bernoulli - } l(\theta)=\log \left(\theta^{N_{1}}(1-\theta)^{N_{0}}\right)=N_{1} \log \theta+N_{0} \log (1-\theta)\right. \\
& \text { - }\left(N_{1}, N_{0}\right) \text { ore sufficient statistics of } D \\
& \text { (ie. } \mathcal{L}(\theta \mid D)=\text { pavametrvic } f_{n} \text { of } N_{1} \text { and } N_{0} \text {) } \\
& \text { - aLE- } \underset{\theta \in[0,1]}{\operatorname{argmax}} \mathcal{L}(\theta)=\underset{\theta \in[0, n]}{\operatorname{argmax}}(\theta)=\frac{N_{1}}{N_{1}+N_{0}}=\frac{N_{1}}{n}
\end{aligned}
$$

cromwell's rule
how should we choose the prior?
the zeroth rule of Bayesian statistics
never set $p(\theta \mid \mathcal{M})=0$ or $p(\theta \mid \mathcal{M})=1$ for any θ
beseech you, in the bowels of Christ, think it possible that you may be mistaken." (Onion Cromwell, 1650)

- Connected to philosophy of science
(Falsifiability)
also see: Jacob Bronowski on Cromwell's Rule and the scientific method
from where do we get a prior?
- data $D=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\} \in\{0,1\}^{n}$
- model $\mathcal{M}: X_{i}$ are generated i.i.d. from a $\operatorname{Ber}(\theta)$ distribution
option 1: from the 'problem statement'
Mackay example 2.6
- eleven urns labeled by $u \in\{0,1,2, \ldots, 10\}$, each containing ten balls
- urn u contains u balls and Toil blue balls
- select urn u uniformly at random and draw n balls with replacement, obtaining n_{R} and an? blue balls

$$
P(\theta)=\operatorname{Unif}\left\{\frac{0}{10} \cdot \frac{1}{10}, \frac{2}{10}, \cdots, \frac{10}{10}\right\}
$$

from where do we get a prior

- data $D=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\} \in\{0,1\}^{n}$
- model $\mathcal{M}: X_{i}$ are generated i.i.d. from a $\operatorname{Ber}(\theta)$ distribution
option 2: the maximum entropy principle choose $p(\theta \mid \mathcal{M})$ to be distribution with maximum entropy given \mathcal{M} we know $\theta \in[0,1]$
- Maximum entropy prion on $[0,1] \equiv \cup[0,1]$
from where do we get the prior, take 2
- data $D=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\} \in\{0,1\}^{n}$
- model $\mathcal{M}: X_{i}$ are generated i.i.d. from a $\operatorname{Ber}(\theta)$ distribution
option 3: easy updates via conjugate priors
- prior $p(\theta)$ is said to be conjugate to likelihood $p(D \mid \theta)$ if corresponding posterior $p(\theta \mid D)$ has same functional form as $p(\theta)$
- natural conjugate prior: $p(\theta)$ has same functional form as $p(D \mid \theta)$
- conjugate prior family: closed under Bayesian updating

Nite . Too forty of all dodrubtions is twirly a Bajgite prior... we want mine useful families

the Beta distribution

Beta distribution

- $x \in[0,1]$, parameters: $\Theta=(\alpha, \beta) \in \mathbb{R}^{+}$('\# ones' +1 ,' $\#$ zeros' +1)
- pdf: $p(x) \propto x^{\alpha-1}(1-x)^{\beta-1}$

G Gammatn

- normalizing constant: $\frac{1}{B(\alpha, \beta)}=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}$

Beta-Bernoulli prior and updates

- data $D=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\} \in\{0,1\}^{n}$, contains N_{1} ones and N_{0} zeros
- model $\mathcal{M}: X_{i}$ are generated i.i.d. from a $\operatorname{Ber}(\theta)$ distribution

Beta-Bernoulli model

- prior parameters: $\Theta_{0}=(\alpha, \beta) \in \mathbb{R}^{+}$(hyperparameters)
- Beta-Bernoulli prior: Beta $(\alpha, \beta) \sim p(\theta) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1}$
- likelihood: $p(D \mid \theta)=\epsilon^{N_{1}}(1-\Theta)^{N_{0}}$
then via Bayesian update we get
- posterior:

$$
p(\theta \mid D) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1} \theta^{N_{\Omega}}(1-\theta)^{N_{0}} \sim \operatorname{Beta}\left(\alpha+N_{1}, \beta+N_{\odot}\right)
$$

the Beta distribution: getting familiar

$$
\begin{aligned}
& \text { Beta }(\alpha, \beta) \text { distribution } \\
& \text { properties of } \Gamma(\alpha)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} \\
& \frac{1}{B(\alpha, \beta)}=\frac{1}{\int_{0}^{1-1} x^{\alpha-1}(1-x)^{\beta-1} d x}=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \\
& \Gamma(\alpha)=\int_{0}^{\alpha} e^{-y} y^{\alpha-1} d y \quad \Gamma(\alpha+1)=\alpha \Gamma(\alpha) \\
& \cdot \text { If } \alpha \text { is an integer - } \Gamma(\alpha)=(\alpha-1)!
\end{aligned}
$$

the Beta distribution: mean and mode

$$
\begin{aligned}
& \text { Beta }(\alpha, \beta) \text { distribution } \\
& \begin{aligned}
& p(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} \\
&=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \cdot \frac{\Gamma(\beta) \Gamma(\alpha+1)}{\Gamma(\alpha+\beta+1)}=\frac{\alpha}{\alpha+\beta} \\
& \text { Thus mean of Beta }(\alpha, \beta) \text { dist is } \frac{\alpha(\beta)}{\alpha+\beta}(1-x)^{\beta-1} d x \\
& x+\beta
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { mode - arg max } \frac{x^{\alpha-1}(1-x)^{\beta-1}}{\beta(\alpha, \beta)} \\
& \frac{d}{d x}\left(x^{\alpha-1}(1-x)^{\beta-1}\right)=(\alpha-1) x^{\alpha-2}(1-x)^{\beta-1}-(\beta-1) x^{\alpha-1}(1-2)^{\beta-1}=0 \\
& \Rightarrow(\alpha-1)\left(1-x^{*}\right)=(\beta-1) x^{*} \\
& \Rightarrow \quad x^{*}=\frac{\alpha-1}{\alpha+\beta-2} \quad(\text { for } \alpha>1, \alpha+\beta>2)
\end{aligned}
$$

This mode of Beta (α, β) dist is $\frac{\alpha-1}{\alpha+\beta-2}$

Beta-Bernoulli model: what should we report?

- data $D=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\} \in\{0,1\}^{n}$, contains N_{1} ones and N_{0} zeros
- model $\mathcal{M}: X_{i}$ are generated i.i.d. from a $\operatorname{Ber}(\theta)$ distribution
- prior: $p(\theta) \sim \operatorname{Beta}(\alpha, \beta)$ posterior: $p(\theta \mid D) \sim \operatorname{Beta}\left(\alpha+N_{1}, \beta+N_{e}\right)$

Correct Answer -
You should re fort
Model, Prior, Posterior

- Decision theoretic answer - Ask for a loss fr, report θ which minimizes loos
decision theory
- Choose 'actions' to minimize a loss function (stats/) maximize a utility function (economic)
- Eg. Let θ be sample foo postenar. Out put $\hat{\theta}$ to minimize

1) $L(0, \hat{\theta})=\mathbb{1}\{\theta \neq \hat{\theta}\} \quad$ (L oloss) $-\hat{\theta}_{L_{0}}=$ mode of posterior dist an
2) $L(\partial \hat{\theta})=|\theta-\hat{\theta}| \quad\left(L_{1}\right.$ lass $)-\hat{\theta}_{L_{1}}=$ median of posterisio dist
3) $L(\theta, \hat{\theta})=(\theta-\hat{\theta})^{2}\left(L_{2}\right.$ lass $)-\hat{\theta}_{L_{2}}=$ men of posterior dish In general, velure any min $\mathbb{E}_{\theta \sim}[\underbrace{}_{\text {loss }} \quad f_{n}$

- data $D=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\} \in\{0,1\}^{n}$, contains N_{1} ones and N_{0} zeros
- model $\mathcal{M}: X_{i}$ are generated i.i.d. from a $\operatorname{Ber}(\theta)$ distribution
- prior: $p(\theta) \sim \operatorname{Beta}(\alpha, \beta) \quad$ posterior: $p(\theta \mid D) \sim \operatorname{Beta}\left(\alpha+N_{1}, \beta+N_{e}\right)$
posterior mean: $\mathbb{E}\left[\theta \mid \alpha, \beta, N_{0}, N_{1}\right]=\mathbb{E}\left[\operatorname{Bet}\left(\alpha+N_{1}, \beta+N_{0}\right)\right]$

$$
\begin{array}{ll}
\begin{array}{l}
\text { Define } m=\alpha+\beta \\
n=N_{1}+N_{0}
\end{array} & =\frac{\alpha+N_{1}}{\alpha+\beta+N_{1}+N_{0}}=\frac{\alpha+N_{1}}{m+n} \\
m \equiv \text { 'number of prior samples' } \\
\frac{\alpha}{m} \equiv \text { prior mean } \\
\frac{N_{1}}{n} \equiv \text { data mean (also, MLE) } \\
w=\frac{\alpha}{m+n} \equiv \frac{\alpha}{m+n}+\frac{N_{1}}{n} \cdot \frac{n}{m+n} \\
\text { 'strength of piss' } \\
\text { relative to data }
\end{array} \quad=\underbrace{\omega \cdot \frac{\alpha}{m}+(1-w) \cdot \frac{N_{1}}{n}}_{\text {regularization }}
$$

Beta-Bernoulli model: posterior mode (MAP estimation)
maximum a posteviori

- data $D=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\} \in\{0,1\}^{n}$, contains N_{1} ones and N_{0} zeros
- model $\mathcal{M}: X_{i}$ are generated i.i.d. from a $\operatorname{Ber}(\theta)$ distribution
- prior: $p(\theta) \sim \operatorname{Beta}(\alpha, \beta) \quad$ posterior: $p(\theta \mid D) \sim \operatorname{Beta}\left(\alpha+N_{1}, \beta+N_{2}\right)$
posterior mode: $\max _{\theta \in[0,1]}\left(\theta \mid \alpha, \beta, N_{0}, N_{1}\right)=\frac{\alpha+N_{1}-1}{\alpha+\beta+N_{1}+N_{2}-2}$
. If $\alpha=\beta=1$ (ie, uniform prov)

$$
\theta_{M A P}=\frac{N_{1}}{N_{1}+N_{2}}
$$

In general, if prior is uniform, then $\Theta_{\text {MLE }}=\Theta_{\text {MAP }}$

Beta-Bernoulli model: posterior prediction (marginalization)

- data $D=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\} \in\{0,1\}^{n}$, contains N_{1} ones and N_{0} zeros
- model $\mathcal{M}: X_{i}$ are generated i.i.d. from a $\operatorname{Ber}(\theta)$ distribution
- prior: $p(\theta) \sim \operatorname{Beta}(\alpha, \beta)$ posterior: $p(\theta \mid D) \sim \operatorname{Beta}\left(\alpha+N_{1}, \beta+N_{2}\right)$
posterior prediction:

$$
\begin{aligned}
\mathbb{P}[X=1 \mid D] & =\int_{0}^{1} p(\theta) \cdot \theta \cdot d \theta \\
& =\mathbb{E}[\theta]=\frac{\alpha+N_{1}}{\alpha+\beta+N_{1}+N_{2}}
\end{aligned}
$$

$$
\text { If } d=\beta=1, \quad \mathbb{P}[x=1 / D]=\frac{N_{1}+1}{N_{1}+N_{2}+2}
$$

the black swan

- If we observe $N_{0}=n$, then what is $\mathbb{P}\left[X_{n+1}=1\right]$?

$$
-M L E \equiv \mathbb{P}_{M L E}\left[x_{n+1}=1\right]=0, \mathbb{P}_{M L E}\left[x_{n+1}=0\right]=1
$$

- Laplace (ie, Bayesian update with Bete:(1,i) prior)

$$
\mathbb{P}_{\operatorname{lop}}\left[x_{n+1}=1\right]=\frac{1}{n+2}, \mathbb{P}_{\operatorname{lop}}\left[x_{n+1}=0\right]=\frac{n+1}{n+2}
$$

move 'O's stat we see, less unlikely the arrival of a ' 1 ' tower, not impossible! renemember Cromwell's law

