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Bayesian basics



marginals and conditionals

let X and Y be discrete rvs taking values in N. denote the joint pmf:

pXY (x , y) = P[X = x ,Y = y ]

marginalization: computing individual pmfs from joint pmfs as

pX (x) =
X

y2N
pXY (x , y) pY (y) =

X

x2N
pXY (x , y)

conditioning: pmf of X given Y = y (with pY (y) > 0) defined as:

P[X = x |Y = y ] , pX |Y (x |y) =
pXY (x , y)

pY (y)

more generally, can define P[X 2 A|Y 2 B] for sets A,B 2 N
see also this visual demonstration



the basic ‘rules’ of Bayesian inference

let X and Y be discrete rvs taking values in N, with joint pmf p(x , y)

product rule

for x , y 2 N, we have: pXY (x , y) = pX (x)pY |X (y |x) = pY (y)pX |Y (x |y)

sum rule

for x 2 N, we have: pX (x) =
P

y2N pX |Y (x |y)pY (y)

and most importantly!

Bayes rule

for any x , y 2 N, we have:

pX |Y (x |y) =
pX (x)pY |X (y |x)P
x2N pY |X (y |x)pX (x)

see also this video for an intuitive take on Bayes rule



fundamental principle of Bayesian statistics

– assume the world arises via an underlying generative model M
– use random variables to model all unknown parameters ✓

– incorporate all that is known by conditioning on data D

– use Bayes rule to update prior beliefs into posterior beliefs

p(✓|D,M) / p(✓|M)p(D|✓,M)



pros and cons

in praise of Bayes

– conceptually simple and easy to interpret

– works well with small sample sizes and overparametrized models

– can handle all questions of interest: no need for di↵erent estimators,

hypothesis testing, etc.

why isn’t everybody Bayesian

– they need priors (subjectivity. . . )

– they may be more computationally expensive: computing normalization

constant and expectations, and updating priors, may be di�cult



basics of Bayesian inference



the likelihood principle

given model M with parameters ⇥, and data D, we define:

– the prior p(⇥|M): what you believe before you see data

– the posterior p(⇥|D,M): what you believe after you see data

– the marginal likelihood or evidence p(D|M): how probable is the data

under our prior and model

these three are probability distributions; the next is not

– the likelihood: L(⇥) , p(D|M, ✓): function of ⇥ summarizing data

the likelihood principle

given model M, all evidence in data D relevant to parameters ⇥ is

contained in the likelihood function L(⇥)

this is not without controversy; see Wikipedia article



REMEMBER THIS!!

given model M with parameters ⇥, and data D, we define:

– the prior p(⇥|M): what you believe before you see data

– the posterior p(⇥|D,M): what you believe after you see data

– the marginal likelihood or evidence p(D|M): how probable is the data

under our prior and model

– the likelihood: L(⇥) , p(D|M, ✓): function of ⇥ summarizing the data

the fundamental formula of Bayesian statistics

posterior =
likelihood⇥ prior

evidence

also see: Sir David Spiegelhalter on Bayes vs. Fisher





example: the mystery Bernoulli rv

• data D = {X1,X2, . . . ,Xn} 2 {0, 1}n

• model M: Xi are generated i.i.d. from a Ber(✓) distribution

fix ✓; what is P[Xi |M] for any i 2 [n]?

let H = # of ‘1’s in {X1,X2, . . . ,Xn}; what is P[H|M,D]?



the Bernoulli likelihood function

• data D = {X1,X2, . . . ,Xn} 2 {0, 1}n

• model M: Xi are generated i.i.d. from a Ber(✓) distribution

likelihood: L(⇥) , p(D|M, ✓): function of ⇥ summarizing the data



log-likelihood, su�cient statistics, MLE



cromwell’s rule

how should we choose the prior?

the zeroth rule of Bayesian statistics

never set p(✓|M) = 0 or p(✓|M) = 1 for any ✓

also see: Jacob Bronowski on Cromwell’s Rule and the scientific method



from where do we get a prior?

• data D = {X1,X2, . . . ,Xn} 2 {0, 1}n

• model M: Xi are generated i.i.d. from a Ber(✓) distribution

option 1: from the ‘problem statement’

Mackay example 2.6
– eleven urns labeled by u 2 {0, 1, 2, . . . , 10}, each containing ten balls

– urn u contains u red balls and 10u blue balls

– select urn u uniformly at random and draw n balls with replacement,

obtaining nR red and nnR blue balls



from where do we get a prior

• data D = {X1,X2, . . . ,Xn} 2 {0, 1}n

• model M: Xi are generated i.i.d. from a Ber(✓) distribution

option 2: the maximum entropy principle

choose p(✓|M) to be distribution with maximum entropy given M
we know ✓ 2 [0, 1]



from where do we get the prior, take 2

• data D = {X1,X2, . . . ,Xn} 2 {0, 1}n

• model M: Xi are generated i.i.d. from a Ber(✓) distribution

option 3: easy updates via conjugate priors

- prior p(✓) is said to be conjugate to likelihood p(D|✓) if corresponding
posterior p(✓|D) has same functional form as p(✓)

- natural conjugate prior: p(✓) has same functional form as p(D|✓)
- conjugate prior family: closed under Bayesian updating



the Beta distribution

Beta distribution

- x 2 [0, 1], parameters: ⇥ = (↵,�) 2 R+ (‘# ones’+1,‘# zeros’+1)

- pdf: p(x) / x
↵�1(1� x)��1

- normalizing constant: 1

B(↵,�) =
�(↵+�)
�(↵)�(�)



Beta-Bernoulli prior and updates

• data D = {X1,X2, . . . ,Xn} 2 {0, 1}n, contains N1 ones and N0 zeros

• model M: Xi are generated i.i.d. from a Ber(✓) distribution

Beta-Bernoulli model

- prior parameters: ⇥0 = (↵,�) 2 R+ (hyperparameters)

- Beta-Bernoulli prior: Beta(↵,�) ⇠ p(✓) / ✓↵�1(1� ✓)��1

- likelihood: p(D|✓) = x
N1(1� x)N0

then via Bayesian update we get

- posterior:

p(✓|D) / ✓↵�1(1� ✓)��1✓N0(1� ✓)N1 ⇠ Beta(↵+ N1,� + N2)



the Beta distribution: getting familiar

Beta(↵,�) distribution

p(x) =
�(↵+ �)

�(↵)�(�)
x
↵�1(1� x)��1

properties of �(↵)



the Beta distribution: mean and mode

Beta(↵,�) distribution

p(x) =
�(↵+ �)

�(↵)�(�)
x
↵�1(1� x)��1





Beta-Bernoulli model: what should we report?

• data D = {X1,X2, . . . ,Xn} 2 {0, 1}n, contains N1 ones and N0 zeros

• model M: Xi are generated i.i.d. from a Ber(✓) distribution

• prior: p(✓) ⇠ Beta(↵,�) posterior: p(✓|D) ⇠ Beta(↵+ N1,� + N2)



decision theory



Beta-Bernoulli model: posterior mean

• data D = {X1,X2, . . . ,Xn} 2 {0, 1}n, contains N1 ones and N0 zeros

• model M: Xi are generated i.i.d. from a Ber(✓) distribution

• prior: p(✓) ⇠ Beta(↵,�) posterior: p(✓|D) ⇠ Beta(↵+ N1,� + N2)

posterior mean: E[✓|↵,�,N0,N1] =



Beta-Bernoulli model: posterior mode (MAP estimation)

• data D = {X1,X2, . . . ,Xn} 2 {0, 1}n, contains N1 ones and N0 zeros

• model M: Xi are generated i.i.d. from a Ber(✓) distribution

• prior: p(✓) ⇠ Beta(↵,�) posterior: p(✓|D) ⇠ Beta(↵+ N1,� + N2)

posterior mode: max✓2[0,1] p(✓|↵,�,N0,N1) =



Beta-Bernoulli model: posterior prediction (marginalization)

• data D = {X1,X2, . . . ,Xn} 2 {0, 1}n, contains N1 ones and N0 zeros

• model M: Xi are generated i.i.d. from a Ber(✓) distribution

• prior: p(✓) ⇠ Beta(↵,�) posterior: p(✓|D) ⇠ Beta(↵+ N1,� + N2)

posterior prediction: P[X = 1|D] =




