ORIE 4742 - Info Theory and Bayesian ML

Chapter 6: Intro to Bayesian Statistics

Februaru 20, 2020

Sid Banerjee, ORIE, Cornell

Bayesian basics

marginals and conditionals

let X and Y be discrete rvs taking values in \mathbb{N} . denote the joint pmf: $p_{XY}(x, y) = \mathbb{P}[X = x, Y = y]$

marginalization: computing individual pmfs from joint pmfs as

$$p_X(x) = \sum_{y \in \mathbb{N}} p_{XY}(x, y)$$
 $p_Y(y) = \sum_{x \in \mathbb{N}} p_{XY}(x, y)$

conditioning: pmf of X given Y = y (with $p_Y(y) > 0$) defined as:

$$\mathbb{P}[X = x | Y = y] \triangleq p_{X|Y}(x|y) = \frac{p_{XY}(x, y)}{p_Y(y)}$$

more generally, can define $\mathbb{P}[X \in \mathcal{A} | Y \in \mathcal{B}]$ for sets $\mathcal{A}, \mathcal{B} \in \mathbb{N}$ see also this visual demonstration

the basic 'rules' of Bayesian inference

let X and Y be discrete rvs taking values in \mathbb{N} , with joint pmf p(x, y)product rule for $x, y \in \mathbb{N}$, we have: $p_{XY}(x, y) = p_X(x)p_{Y|X}(y|x) = p_Y(y)p_{X|Y}(x|y)$ sum rule for $x \in \mathbb{N}$, we have: $p_X(x) = \sum_{y \in \mathbb{N}} p_{X|Y}(x|y)p_Y(y)$

and most importantly!

Bayes rule

for any $x, y \in \mathbb{N}$, we have:

$$p_{X|Y}(x|y) = \frac{p_X(x)p_{Y|X}(y|x)}{\sum_{x \in \mathbb{N}} p_{Y|X}(y|x)p_X(x)}$$

see also this video for an intuitive take on Bayes rule

fundamental principle of Bayesian statistics

- assume the world arises via an underlying generative model ${\cal M}$
- use random variables to model all unknown parameters heta
- incorporate all that is known by conditioning on data D
- use Bayes rule to update prior beliefs into posterior beliefs

pros and cons

in praise of Bayes

- conceptually simple and easy to interpret
- works well with small sample sizes and overparametrized models
- can handle all questions of interest: no need for different estimators, hypothesis testing, etc.

why isn't everybody Bayesian

- they need priors (subjectivity...)
- they may be more computationally expensive: computing normalization constant and expectations, and updating priors, may be difficult

basics of Bayesian inference

the likelihood principle

given model \mathcal{M} with parameters Θ , and data D, we define:

- the prior $p(\Theta|\mathcal{M})$: what you believe before you see data
- the posterior $p(\Theta|D,\mathcal{M})$: what you believe after you see data
- the marginal likelihood or evidence p(D|M): how probable is the data under our prior and model

these three are probability distributions; the next is not

- the likelihood: $\mathcal{L}(\Theta) \triangleq \rho(D|\mathcal{M}, \mathbf{0})$: function of Θ summarizing data

the likelihood principle

given model \mathcal{M} , all evidence in data D relevant to parameters Θ is contained in the likelihood function $\mathcal{L}(\Theta)$

this is not without controversy; see Wikipedia article

REMEMBER THIS!!

given model \mathcal{M} with parameters Θ , and data D, we define:

- the prior $p(\Theta|\mathcal{M})$: what you believe before you see data
- the posterior $\rho(\Theta|D,\mathcal{M})$: what you believe after you see data
- the marginal likelihood or evidence $p(D|\mathcal{M})$: how probable is the data under our prior and model
- the likelihood: $\mathcal{L}(\Theta) \triangleq p(D|\mathcal{M}, \mathbf{\check{o}})$: function of Θ summarizing the data

the fundamental formula of Bayesian statistics

posterior =
$$\frac{\text{likelihood} \times \text{prior}}{\text{evidence}} \left| \begin{array}{c} P(\theta | D) = P(D | \theta) & P(\theta) \\ P(D) \end{array} \right|$$

also see: Sir David Spiegelhalter on Bayes vs. Fisher

example: the mystery Bernoulli rv

• data
$$D = \{X_1, X_2, \dots, X_n\} \in \{0, 1\}^n$$

• model $\mathcal{M}: X_i$ are generated i.i.d. from a $Ber(\theta)$ distribution
fix θ ; what is $\mathbb{P}[X_i | \mathcal{M}]$ for any $i \in [n]$? $\mathbb{N}_1 = \# \circ f$ is $\mathbb{N}_0 = \# \circ f \circ f$
 $\mathbb{P}\left[X_1 = x_1 x_2 = x_2 \dots x_n | \mathcal{M}_1 \Theta\right] = \prod_{i>1}^n \Theta^{x_i} (1-\theta)^{1-x_i} = \Theta^{N_1} (1-\theta)^{N_0}$
 $x_i \in \{\circ, i\}$
let $H = \# \circ f$ '1's in $\{X_1, X_2, \dots, X_n\}$; what is $\mathbb{P}[H|\mathcal{M}, \Theta]$?

 $\left| P \left[H = h \right] M, \Theta \right] = \binom{n}{h} \Theta^{h} \left(\left[-\Theta \right]^{n-h} \sim B(n(\eta, \theta)) \right]$

the Bernoulli likelihood function

• data $D = \{X_1, X_2, \dots, X_n\} \in \{0, 1\}^n$

• model \mathcal{M} : X_i are generated i.i.d. from a $Ber(\theta)$ distribution

likelihood: $\mathcal{L}(\Theta) \triangleq \rho(D|\mathcal{M}, \theta)$: function of Θ summarizing the data

$$\mathcal{L}(\theta) = \Theta^{N_1} (1-\theta)^{N_0} \qquad \frac{B_e}{Lik}$$

• Note - $\mathcal{L}(\partial)$ is NOT a distribution (ie, $\int \mathcal{L}(\partial) d\theta \neq 1$)

log-likelihood, sufficient statistics, MLE

cromwell's rule

how should we choose the prior?

the zeroth rule of Bayesian statistics never set $p(\theta|\mathcal{M}) = 0$ or $p(\theta|\mathcal{M}) = 1$ for an

Connected to philosophy of science
 (Falsifiability)

also see: Jacob Bronowski on Cromwell's Rule and the scientific method

from where do we get a prior?

• data $D = \{X_1, X_2, \dots, X_n\} \in \{0, 1\}^n$

• model \mathcal{M} : X_i are generated i.i.d. from a $Ber(\theta)$ distribution

option 1: from the 'problem statement'

Mackay example 2.6

- eleven urns labeled by $u \in \{0, 1, 2, \dots, 10\}$, each containing ten balls
- urn u contains u red balls and \mathcal{D}_{u} blue balls
- select urn u uniformly at random and draw n balls with replacement, obtaining n_R red and $\frac{n-n_R}{qm_R}$ blue balls

$$P(\theta) = U_{nif} \{\frac{20}{10}, \frac{1}{10}, \frac{2}{10}, \dots, \frac{10}{10}\}$$

from where do we get a prior

• data $D = \{X_1, X_2, \dots, X_n\} \in \{0, 1\}^n$

• model \mathcal{M} : X_i are generated i.i.d. from a $Ber(\theta)$ distribution

option 2: the maximum entropy principle choose $p(\theta|\mathcal{M})$ to be distribution with maximum entropy given \mathcal{M} we know $\theta \in [0, 1]$

· Maximum entropy prior on [0,1] = U[0,1]

from where do we get the prior, take 2

• data $D = \{X_1, X_2, \dots, X_n\} \in \{0, 1\}^n$

• model \mathcal{M} : X_i are generated i.i.d. from a $Ber(\theta)$ distribution

option 3: easy updates via conjugate priors

- prior $p(\theta)$ is said to be conjugate to likelihood $p(D|\theta)$ if corresponding posterior $p(\theta|D)$ has same functional form as $p(\theta)$
- natural conjugate prior: p(heta) has same functional form as p(D| heta)
- conjugate prior family: closed under Bayesian updating

the Beta distribution

Beta distribution

- $x \in [0,1]$, parameters: $\Theta = (lpha, eta) \in \mathbb{R}^+$ ('# ones'+1,'# zeros'+1)
- pdf: $p(x) \propto x^{\alpha-1}(1-x)^{\beta-1}$
- normalizing constant:

Beta-Bernoulli prior and updates

data D = {X₁, X₂,..., X_n} ∈ {0,1}ⁿ, contains N₁ ones and N₀ zeros
model M: X_i are generated i.i.d. from a Ber(θ) distribution

Beta-Bernoulli mode

- prior parameters: $\Theta_0 = (lpha, eta) \in \mathbb{R}^+$ (hyperparameters)
- Beta-Bernoulli prior: $\mathit{Beta}(lpha,eta)\sim p(heta)\propto heta^{lpha-1}(1- heta)^{eta-1}$
- likelihood: $p(D|\theta) = {\mathbf{e}}^{N_1} (1 {\mathbf{e}})^{N_0}$

then via Bayesian update we get

posterior:

 $p(\theta|D) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1}\theta^{N_{1}}(1-\theta)^{N_{2}} \sim Beta(\alpha+N_{1},\beta+N_{2})$

the Beta distribution: getting familiar

the Beta distribution: mean and mode

Beta(α, β) distribution mean of Beta (α, β) dist is $\frac{\alpha}{\alpha+\beta}$

mode of Beta (α, β) dist is $\frac{d-1}{\alpha+\beta-2}$

Beta-Bernoulli model: what should we report?

data D = {X₁, X₂,..., X_n} ∈ {0,1}ⁿ, contains N₁ ones and N₀ zeros
model M: X_i are generated i.i.d. from a Ber(θ) distribution

• prior: $p(\theta) \sim Beta(\alpha, \beta)$ posterior: $p(\theta|D) \sim Beta(\alpha + N_1, \beta + N_0)$

· Decision theoretic answer - Ack for a loss fn, report Q which minimizes loss

decision theory

 $(Lo loss) - \hat{\Theta}_{L_0} = made of posterior dist.$ $(L_1 \log s) - \hat{\Theta}_{L_1} = median of posterior distribution$ $<math>(L_2 \log s) - \hat{\Theta}_{L_2} = mean of posterior distribution$ In general, veture ang min $\mathbb{E}_{\substack{\partial n \text{ posterial}}} \left[L(\partial, \partial) \right]_{\text{loss fraction}}$

Beta-Bernoulli model: posterior mean

data D = {X₁, X₂,..., X_n} ∈ {0,1}ⁿ, contains N₁ ones and N₀ zeros
model M: X_i are generated i.i.d. from a Ber(θ) distribution

• prior: $p(\theta) \sim Beta(\alpha, \beta)$ posterior: $p(\theta|D) \sim Beta(\alpha + N_1, \beta + N_0)$

posterior mean: $\mathbb{E}[\theta|\alpha,\beta,N_0,N_1] = \left[\frac{1}{2} \int_{\mathcal{B}} \beta_{+} \left(\alpha + N_1, \beta_{+}, N_o \right) \right]$

Define m=d+B n=N1+No m= number of prior samples' <u>OL</u> = prior mean <u>M1</u> = data mean (also, MLE) N = <u>m</u> = 'strength of prior' w= <u>m+n</u> = 'strength of prior' $= \frac{\alpha + N_{1}}{\alpha + \beta + N_{1} + N_{0}} = \frac{\alpha + N_{1}}{m + n}$ $= \frac{\alpha}{m} \cdot \frac{m}{m + n} + \frac{N_{1}}{n} \cdot \frac{n}{m + n}$ $= \frac{W \cdot \alpha}{m + n} + (1 - w) \cdot \frac{N_{1}}{m + n}$ $= \frac{W \cdot \alpha}{regularization} + (1 - w) \cdot \frac{N_{1}}{m + n}$

Beta-Bernoulli model: posterior mode (MAP estimation)

maximum a posteviori

• data $D = \{X_1, X_2, \dots, X_n\} \in \{0, 1\}^n$, contains N_1 ones and N_0 zeros

- model \mathcal{M} : X_i are generated i.i.d. from a $Ber(\theta)$ distribution
- prior: $p(\theta) \sim Beta(\alpha, \beta)$ posterior: $p(\theta|D) \sim Beta(\alpha + N_1, \beta + N_2)$

posterior mode: $\max_{\theta \in [0,1]} p(\theta | \alpha, \beta, N_0, N_1) = 0 + N_1 - 1$

$$A+P + N_1 + N_2 = 2$$

$$I \oint d = \beta = 1 \quad (ie, uniform priov)$$

$$Hen \quad \Theta_{MAP} = \frac{N_1}{N_1 + N_2} = \Theta_{MLE}$$

$$In general, if prior is uniform, then \Theta_{MLE} = \Theta_{MAP}$$

Beta-Bernoulli model: posterior prediction (marginalization)

• data $D = \{X_1, X_2, \dots, X_n\} \in \{0, 1\}^n$, contains N_1 ones and N_0 zeros

- model \mathcal{M} : X_i are generated i.i.d. from a $Ber(\theta)$ distribution
- prior: $p(\theta) \sim Beta(\alpha, \beta)$ posterior: $p(\theta|D) \sim Beta(\alpha + N_1, \beta + N_2)$

posterior prediction: $\mathbb{P}[X = 1|D] =$

$$E[\Theta] = \frac{d + N_1}{d + B + N_1 + N_2}$$

$$f d = P = 1$$
, $IP[X=1/D] = \frac{N_1+1}{N_1+N_2+2}$ laplace
Schutzer

(or "add-one" smothing)

the black swan $\frac{1}{100} \left[X_{n+1} = 1 \right] = \frac{1}{N+2}, \frac{1}{100} \left[X_{n+1} = 0 \right] = \frac{n+1}{n+2}$