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(1) (Isolated nodes in random graphs)
Given a set of n nodes V = [n], the G(n, p) random-graph model constructs a graph by independently
connecting each pair of nodes (i, j) with probability p. Let N0 be the number of isolated nodes (i.e.,
not connected to any other node) in the resulting graph. We now show the following threshold
phenomena: as n grows, N0 either grows with n or goes to 0, depending on if p < lnn/n or > lnn/n.

• (Part a, 5 points)
Prove that:

E[N0] = n(1− p)n−1

Solution: Let Xv be the indicator that node v is isolated – then E[Xv] = (1−p)n−1. Moreover,
B0 =

∑
v∈V Xv. Thus, by linearity of expectations, we have:

E[N0] =
∑
v∈V

E[Xv] = n(1− p)n−1

• (Part b, 5 points)
For the remaining parts, you should use the approximation (1 − p)n−1 ≈ e−np. Now suppose
we choose p = (1− c) lnn/n, for some c ∈ (0, 1) – show that, E[N0] = nc.
Moreover, for this choice of p, it can be shown that V ar(N0) ≤ 2E[N0] (this follows from a
straightforward calculation; however you should assume it). Now show that:

P[N0 = 0] ≤ 2

nc

Hint: Chebyshev’s Inequality - P [|X −E[X]| ≥ t] ≤ V ar(X)/t2

Solution: From before, we have:

E[N0] = n(1− p)n−1 ≈ ne−np

Substituting p = (1− c) lnn/n, we get E[N0] = ne−(1−c) lnn = nc.
Moreover, we have that P[N0 ≤ 0] = P[N0 − E[N0] ≤ −E[N0]] ≤ P[|N0 − E[N0]| ≤ E[N0]].
Now using Chebyshev’s inequality, we get:

P[N0 = 0] ≤ V ar(N0)

E[N0]2
≤ 2

E[N0]
≤ 2

nc
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• (Part c, 5 points) On the other hand, suppose we choose p = (1 + c) lnn/n, for some c > 0.
Show that:

P[N0 6= 0] ≤ 1

nc

Thus, for this choice of p, the number of isolated nodes is 0 with high probability.
Hint: Let Ai be the event that node i is isolated. How can you write the event {N0 6= 0} in
terms of the events Ai?

Solution: First, note that P[Ai] = (1 − p)n−1. Next, observe that the number of isolated nodes is
non-0 if at least one node i is isolated – this means that {N0 6= 0} = {∪iAi}. Now by the union
bound, we have:

P[N0 6= 0] = P[∪iAi] ≤
∑
i

P[Ai] = n(1− p)n−1 ≈ ne−np

Substituting p = (1 + c) lnn/n, we get P[N0 6= 0] = ne−(1+c) lnn = n−c.

Alternate method: We can also get this result by the first-moment method. Note that P[N0 6=
0] = P[N0 ≥ 1] – now by Markov’s inequality, we have:

P[N0 6= 0] ≤ E[N0] = n(1− p)n−1

Contrast this to the use of the second-moment method in part b.
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(2) (Windowed stream sampling)
We want to process a data stream {x1, x2, . . . , xm} to store a random sample over any lookback-
window – at any time (i.e., any m) and for any w ≤ m, we want to be able to a output uniform
random sample from the last w elements. For example, after 100 items have arrived, if we are given
w = 26, we need to return a uniform random element in {x75, x76, . . . , x100}.
• (Part a, 5 points)

Suppose we store each item in the stream as a tuple 〈t, xt, σt〉, where σt are i.i.d Uniform[0, 1]
random variables, one for each time t ∈ [m]. Now for any given lookback-window length w,
let T (w) = arg min{last w elements}{σt}, i.e., the index of the element with the minimum σt

amongst the last w elements. Argue that T (w) is a uniform sample, i.e.:

P
[
T (w) = t

]
=

1

w
∀ t ∈ {m− w + 1,m− w + 2, . . . ,m}

Hint: You can argue this without using anything specific about the Uniform[0, 1] distribution...

Solution: By symmetry, every element t in a window of size w are equally likely to have the
minimum σt. Thus P[T (w) = t] = 1/w.

• (Part b, 5 points)
The above result shows that for any given w, we can return xT (w) as a uniform random sample
from the last w elements. However, storing all tuples 〈t, xt, σt〉 will take too much space.
We now see how to improve this: Suppose for two distinct times t1 and t2 such that t1 < t2 ≤ m,
we are told that σt1 > σt2 . Can we delete one of the tuples 〈t1, xt1 , σt1〉 or 〈t2, xt2 , σt2〉, and
still return a uniform random sample for every w?

Solution: It is clear that 〈t1, xt1 , σt1〉 is not required if we are given w ≤ m − t1. However, if
w > m− t1, then we will still never return xt1 , as the fact that σt1 > σt2 means that σt1 is not
the element with minimum σt in the lookback-window. Thus, we can always delete the tuple
〈t1, xt1 , σt1〉.
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• (Part c, 10 points)
Suppose we store a subset of the tuples C = {〈t, xt, σt〉}, inserting new elements as follows:

– INSERT(xm+1): Generate σm+1 ∼ Uniform[0, 1], and add 〈m+ 1, xm+1, σm+1〉 to C.
Delete all tuples 〈t, xt, σt〉 in C where σt ≥ σm+1.

Let Cm denote the set of tuples stored after m elements have arrived in the stream. Argue that:

E[|Cm|] = Hm

where Hm =
∑m

i=1 1/i is the harmonic sum (which we know from before is Θ(logm)).
Hint: Define Yt to be the indicator that the tth item is stored in Cm. Clearly Ym = 1, as we
always store the latest element. What is the probability that Ym−1 = 1? Now, given the last
k + 1 elements {xm−k, xm−k+1, . . . , xm}, what is the probability that Ym−k = 1?

Solution: Let Yt to be the indicator that the tth item is stored in Cm. Ym = 1 as we always store
the latest element – for Ym−1 to be 1, we need σm−1 < σm, which happens with probability 1/2.
More generally, we have that Yt = 1 if and only if it σt is the smallest in {σt, σt+1, . . . , σm}, which
is true with probability 1/(m− t+ 1). Finally, we have that |Cm| =

∑m
t=1 Yt, and hence by linearity

of expectation, we have:

E[|Cm|] =

m∑
t=1

E[Yt] =

m∑
t=1

1

m− t+ 1
= Hm
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(3) (Maximum and minimum loaded bin)

24n lnn balls are thrown in n bins uniformly at random. Let Bi = load of bin i.

• (Part a, 5 points)
What is E[Bi]?

Solution: Clearly Bi = Bin(24n lnn, 1/n), and hence:

E[Bi] =
24n lnn

n
= 24 lnn

• (Part b, 10 points)
Let Bmax and Bmin denote the maximum and minimum loaded bin respectively. Show that:

P [Bmax −Bmin ≥ E[Bi]] ≤
2

n
Hint: For an individual bin, recall we have the following Chernoff bound – for any ε < 1:

P [|Bi −E[Bi]| ≥ εE[Bi]] ≤ 2 exp

(
−ε2E[Bi]

3

)

Solution: First, for an individual bin Bi, the above Chernoff bound (with ε = 1/2) gives us:

P

[
|Bi −E[Bi]| ≥

1

2
E[Bi]

]
≤ 2 exp

(
−E[Bi]

12

)
=

2

n2

Further, by the union bound, we can extend the concentration to all bins, to get:

P

[
∪i
{
|Bi −E[Bi]| ≥

1

2
E[Bi]

}]
≤ n 2

n2
=

2

n

Finally, observe that as long as all the Bi are in the range [E[Bi]/2, 3E[Bi]/2] (as is true in the
complement of the event considered in the above concentration guarantee), then we also have that
Bmax, Bmin ∈ [E[Bi]/2, 3E[Bi]/2] and hence Bmax −Bmin < E[Bi]. Thus, we get:

P [Bmax −Bmin ≥ E[Bi]] ≤
2

n


