
ORIE 4520: Stochastics at Scale
Fall 2015

Homework 6: Solutions
Sid Banerjee (sbanerjee@cornell.edu)

Problem 1: (The Flajolet-Martin Counter)

In class (and in the prelim!), we looked at an idealized algorithm for finding the number of distinct
elements in a stream, where we sampled uniform random variables for each item, and then stored
their minimum value. One way to implement this in practice is via the Flajolet-Martin counter:

Suppose we have a stream (X1, X2, . . . , Xm) of m items, where each item Xi corresponds to an
element in [n]. Assume n is a power of 2, and k = log2 n. Let h be a hash function that maps each
of the elements in [n] to k bits – in particular, let us denote h(x) = (b1(x), b2(x), . . . , bk(x)) for each
x ∈ [n]), and assume that each bit k independently satisfies P[bk(x) = 0] = P[bk(x) = 1] = 1/2
for every pair x ∈ [n]. For every x ∈ [n], let r(x) be the number of trailing 0’s in h(x) – so for
example, for n = 16 (i.e., k = 4), h(x) = 0100 means r(x) = 2, h(x) = 1000 means r(x) = 3, and
so on). Finally, let R = maxi{r(Xi)} – i.e., the maximum number of trailing 0’s in the hashes of
the items in the stream.

Part (a)

For any element x ∈ [n], let Yj(x) be the indicator that r(x) = j. Argue that E[Yj(x)] = 1/2j+1.

Solution:

E[Yj(x)] = P[r(x) = j] =

(
1

2

)j 1

2
=

1

2j+1
.

Part (b)

Let F0 be the number of distinct elements in the stream, and define Nj to be the number of elements
in the stream for which r(x) > j. Show that:

E[Nj ] =
F0

2j+1
, V ar(Nj) =

F0

2j+1

(
1− 1

2j+1

)
≤ E[Nj ]

Solution: Let 1{A} denote the indicator for any event A. First note that

Nj =

F0∑
i=1

1{r(x)>j} =

F0∑
i=1

1{r(x)≥j+1}.

Therefore, by linearity of expectation,

E[Nj ] = E

[
F0∑
i=1

1{r(x)≥j+1}

]
=

F0∑
i=1

P [r(x) ≥ j + 1] =
F0

2j+1
.

Moreover, since each element x is hashed independently, hence 1{r(x)≥j+1} are independent. Also,

since 1{r(x)≥j+1} ∼ Bernoulli(1/2j+1), this implies that V ar
(
1{r(x)≥j+1}

)
= 2−(j+1)

(
1− 2−(j+1)

)
.

1

mailto:sbanerjee@cornell.edu


ORIE 4520: Stochastics at Scale
Fall 2015

Homework 6: Solutions
Sid Banerjee (sbanerjee@cornell.edu)

Thus we have:

V ar(Nj) = V ar

(
F0∑
i=1

1{r(x)≥j+1}

)
=

F0∑
i=1

V ar(1{r(x)≥j+1})

= F0V ar(1{r(x)≥j+1}) =
F0

2j+1

(
1− 1

2j+1

)
.

Note that this implies V ar(Nj) ≤ E[Nj ]

Part (c)

Suppose we use 2R as an estimator for F0. Argue that for any j, P[R ≥ j] = P[Nj−1 > 0]. Next,
assuming that F0 is a power of 2, show that:

P[R < log2(F0)− c] ≤
1

2c

Hint: Part (c) had a mistake in the homework. The original version was:
Suppose we use 2R as an estimator for F0. Argue that for any j, P[R ≥ j] ≥ P[Nj > 0]. Next,
assuming that F0 is a power of 2, show that:

P[R < log2(F0)− c] ≤
1

2c

Although the first statement is correct, it gives a weaker bound of 2/2c.

Solution: First, using Chebyshev, we get:

P[Nj = 0] ≤ P [|Nj −E[Nj ]| > E[Nj ]] ≤
V ar(Nj)

(E[Nj ])2
≤ E[Nj ]

(E[Nj ])2
=

1

E[Nj ]
=

2j+1

F0
.

Note that both R ≥ j and Nj−1 ≥ 1 if and only if there is at least one element x for which
r(x) > j – thus, P[R < j] = P[Nj−1 = 0]. Now from the previous inequality, we have:

P[R < log2(F0)− c] = P[Nlog2(F0)−c−1 = 0]

≤ 2log2(F0)−c

F0
=

1

2c
.

Part (d)

On the other hand, argue that P[R ≥ j] ≤ E[Nj−1], and hence show that:

P[R ≥ log2(F0) + c] ≤ 1

2c

Hint: Part (d) had a mistake in the homework. The original version was:
On the other hand, argue that P[R ≥ j] ≤

∑
j′≥j E[Nj′ ], and hence. . .
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Solution: Note that both R ≥ j and Nj−1 ≥ 1 if and only if there is at least one element x for
which r(x) > j. Thus from Markov’s inequality, we have:

P[R ≥ j] = P[Nj−1 ≥ 1] ≤ E[Nj−1] =
F0

2j

Thus we have P[R ≥ log2(F0) + c] ≤ F0
F02c

= 1
2c .

Problem 2: (An Alternate All-Pair Distance Sketch)

In class we saw an All-Pairs Distance Sketch (ADS) by Das-Sarma et al., which for each node v
stored a sketch S(v) with distances to O(log n) other nodes, and then given any pair (u, v), used
the to sketches to compute a shortest-path estimate within a multiplicative ‘stretch’ of O(log n).
We’ll now see an alternate ADS proposed by Cohen et al.

We are given an undirected weighted graph G(V,E), where each edge (u, v) ∈ E has some weight
wu,v ≥ 0 corresponding to its length. The shortest path distance d∗(u, v) between any nodes u and v
is the minimum sum of weights over all paths from u to v. For convenience, assume that the weights
are such that each pair of nodes has a unique shortest-path distance. Thus for any given node v, we
can uniquely sort all nodes in V in increasing order of distance, to get Vv = {v, w1, w2, . . .}, where
d∗(v, wi) < d∗(v, wi+1)}. Moreover, for each node v ∈ V , we generate an i.i.d random variable R(v)
which is Uniform[0, 1] distributed.

Part (a)

To generate the ADS S(v), we first initialize S(v) = (v, 0, R(v)); then sequentially pick nodes wi
from the shortest-path ordering Vv = {v, w1, w2, . . .}, and add (wi, d

∗(v, wi), R(wi)) to S(v) if R(wi)
is smaller than R(u) for all u ∈ S(v). What is the expected number of nodes in S(v)?
Hint: Recall the random sampling from stream algorithm in the prelim.

Solution: Given node v with shortest-path ordering Vv = {v, w1, w2, . . .}, let Xi be the indicator
that node wi is in the ADS S(v). Note that for wi to be added, we need R(wi) < R(v) and
R(wi) < R(wj) for all j < i – thus E[Xi] = 1

i+1 . Now, by linearity of expectation, we have:

E[|S(v)|] = 1 +
n−1∑
i=1

E[Xi] = Hn = Θ(log n)

Part (b)

Given two nodes u and v, to estimate their distance, we first find all nodes w in S(u)∩S(v), and then
compute d̂(u, v) = minw∈S(u)∩S(v) d

∗(u,w) + d∗(w, v). We now argue that d̂(u, v) ≤ log2 nd
∗(u, v)

with constant probability (which we can then amplify by taking independent ADS).
Argue first that for any pair of nodes u and v, we have that |S(u) ∩ S(v)| > 0.
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Solution: Consider the node v∗ = arg minv∈V {R(v)}; as long as the graph is connected (i.e.,
d(u, v) < ∞ for all pairs (u, v)), then it is easy to see that v∗ ∈ S(v) for all nodes v ∈ V . Thus,
|S(u) ∩ S(v)| is at least 1.

Part (c)

As we did in class, for any node v and distance d, define Bd(v) = {u ∈ V |d∗(v, u) ≤ d}, i.e., the set
of nodes within a distance of d from v. Now for any given pair u, v, let d = d∗(u, v). Argue that:

Bd(v) ⊆ B2d(u) ⊆ B3d(v) ⊆ . . . ,

and in general, for any k ∈ {1, 2, . . ., Bkd(v) ⊆ B(k+1)d(u)

Solution: Consider any node w ∈ Bd(v) – then d∗(v, w) ≤ d. Now since the graph is undirected,
therefore one can go from u to w by first taking the shortest path from u to v and then v to w –
thus d∗(u,w) ≤ d∗(u, v) + d∗(v, w) ≤ 2d, and hence w ∈ B2d(u). The remaining inclusions can be
proved in a similar manner.

Part (d)

For convenience, let m = log2 n be an even integer. Now for every pair (u, v), given the sequence
of nested sets Bd(v) ⊆ B2d(u) ⊆ B3d(v) ⊆ . . . ⊆ B(m−1)d(v) ⊆ Bmd(u), argue (by contradiction)
that there exists at least one pair of consecutive sets (i.e., B(2k−1)d(v) ⊆ B(2k)d(u) or B2kd(u) ⊆
B(2k+1)d(v)) such that that the larger set’s cardinality is less than twice that of the smaller set.

Solution: Given the sequence of nested sets Bd(v) ⊆ B2d(u) ⊆ B3d(v) ⊆ . . . ⊆ B(m−1)d(v) ⊆
Bmd(u), suppose instead that there are no pair of consecutive sets (i.e., B(2k−1)d(v) ⊆ B(2k)d(u)
or B2kd(u) ⊆ B(2k+1)d(v)) such that that the larger set’s cardinality is less than twice that of the
smaller set. Then we have B2d(u) > 2Bd(v) ≥ 2, B3d(v) > 2B2d(u) ≥ 4, and so on till we get
⊆ Bmd(u) > 2m = n – this however is a contradiction.

Part (e)

Finally, for a given pair u, v with shortest distance d, and any k ∈ {1, 2, . . . ,m}, we want to find
the probability that a node in Bkd(v) is present in both ADS sketches S(u), S(v). Argue that:

P[∃w ∈ S(u) ∩ S(v) s.t. w ∈ Bkd(v)] ≥ |Bkd(v)|
|B(k+1)d(u)|

This put together with the previous parts shows that with probability at least 1/2, the ADS sketch
returns an estimate d̂(u, v) ≤ md∗(u, v).
Note: The question in the HW was framed incorrectly – this is the correct statement.
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Solution: Recall that Bkd(v) ⊆ B(k+1)d(u). For any set B ⊆ V let v∗(B) = arg minv∈B{R(v)}.
Then we claim that v∗(B(k+1)d(u)) is contained in S(u) – to see this, note that if this were not
the case, then there is some node w with R(w) < R(v∗(B(k+1)d(u))) which is closer to u than
v∗(B(k+1)d(u)). By definition, this would imply that w ∈ B(k+1)d(u), which contradicts the fact
that v∗(B(k+1)d(u)) had the minimum value of R(v) for nodes in B(k+1)d(u). Note however that if
v∗(B(k+1)d(u)) ∈ Bkd(v), then v∗(B(k+1)d(u)) = v∗(B(k)d(v)) (as the sets are nested), and hence it
is also in S(v). Thus, we have that:

P[∃w ∈ S(u) ∩ S(v) s.t. w ∈ Bkd(v)] ≥ P[v∗(B(k+1)d(u)) ∈ Bkd(v)]

=
|Bkd(v)|
|B(k+1)d(u)|

,

where the last inequality follows from the same argument as in MinHash – that taking a uniform
random permutation of nodes is equivalent to we picking node uniformly at random, without
replacement.

Problem 3: (The Galton-Watson Branching Process)

In class we saw the Galton-Watson branching process:

Xn+1 =

Xn∑
i=1

Yn,i,

where Xn is the number of descendants at the nth level of the GW tree, and Yn,i ∼ Y is i.i.d
number of descendants of each node. Let us denote P[Y = k] = pk,E[Y ] = µ, V ar(Y ) = σ2 and
G(s) = E[sY ]. We now try to derive some quantities of interest, in order to understand the GW
process.

Part (a)

Prove that E[Xn+1] = µE[Xn], and hence argue that E[Xn] = µn. Using this, show that if µ < 1,
then P[Xn > 0] = o(1) (i.e., it goes to 0 as n→∞).

Solution: From definition, we have E[Xn+1] = E[
∑Xn

i=1 Yn,i] – now we can write:

E[Xn+1] =
∞∑
k=0

E[
k∑
i=1

Yn,i|Xn = k|]P[Xn = k] =
∞∑
k=0

kµP[Xn = k] = µE[Xn]

Starting with E[X0] = 1, we can iterate to get E[Xn] = µn.
Next, assume µ < 1; since Xn takes integer values, hence from Markov’s inequality, we have:

P[Xn > 0] = P[Xn ≥ 1] ≤ E[Xn] = µn → 0 as n→∞.
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Part (b)

Assuming µ 6= 0, prove that:

V ar(Xn) = σ2µn−1
(

1− µn

1− µ

)
Solution: As in the previous part, we have:

E[X2
n] =

∞∑
k=0

E

[
(

k∑
i=1

Yi)
2

]
P[Xn−1 = k]

=

∞∑
k=0

(
kE
[
Y 2
i

]
+ k(k − 1)E[Yi]

2
)
P[Xn−1 = k]

= (σ2 + µ2)E[Xn−1] + µ2E[X2
n−1 −Xn−1]

= (σ2 + µ2)µn−1 + µ2(E[X2
n−1]− µn−1)

= σ2µn−1 + µ2E[X2
n−1]

Also, we have that V ar(Xn) = E[X2
n] + E[Xn]2. Substituting from above, we get:

V ar(Xn) = σ2µn−1 + µ2E[X2
n−1] + µ2n

= σ2µn−1 + µ2(V ar(Xn−1)− µ2n−2) + µ2n

= σ2µn−1 + µ2(V ar(Xn−1))

Now note that V ar(X0) = 0. Iterating, we get:

V ar[Xn] = σ2
(
µn−1 + µn + . . .+ µ2n−2

)
= σ2µn−1

(
1− µn

1− µ

)
Part (c)

Recall we defined the pgf Gn(s) = E[sXn ], and also defined T to be the time to extinction, (i.e. T =
infn>0 {Xn = 0}), γn = P[Xn = 0] to be the probability of extinction, and γ = P[limn→∞Xn = 0]
as the probability of ultimate extinction. We now see how we can compute T , γn and γ using the
pgf.

Suppose Y ∼ Bernoulli(p), i.e., p1 = p, p0 = 1− p. – show that:

Gn(s) = (1− p)

(
n−1∑
i=0

pi

)
+ pns

Using the above result, show that T is distributed as Geometric(1−p), i.e., P[T = k] = (1−p)pk−1.
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Solution: We can check this by induction. The above formula gives G0(s) = s, which is true
since X0 = 1. Also, note that G(s) = E[sY ] = ps + (1 − p). Now assume the formula is true for
n− 1 – since Gn(s) = G(Gn−1(s)), we get:

Gn(s) = pGn−1(s) + 1− p

= p

(
(1− p)

(
n−2∑
i=0

pi

)
+ pn−1s

)
+ 1− p

= (1− p)

(
1 +

n−1∑
i=1

pi

)
+ +pns

= (1− p)

(
n−1∑
i=0

pi

)
+ pns

Next, recall that in class we showed P[T = k] = Gk(0)−Gk−1(0). Substituting, we get P[T = k] =
(1− p)pk−1, and therefore, T ∼ Geometric(1− p).

Part (d)

Suppose instead Y ∼ Geometric(1− p); find γ, the probability of ultimate extinction.

Solution: If Y ∼ Geometric(1− p), then

G(s) = E[sY ] =
∞∑
k=1

skpk−1(1− p) = (1− p)s
∞∑
k=0

(sp)k =
(1− p)s
1− ps

.

From class, we know that the probability of ultimate extinction γ satisfies

γ =
(1− p)γ
1− pγ

.

Solving, we get γ = min{0, 1} = 0. Note that this makes sense, as we have at least one descendent
for every node, and hence the process never terminates.

Problem 4: (The DFS view of the GW Tree and Random Graph)

In class, we also discussed an alternate way of studying the Galton-Watson process, by expanding
it using a depth-first search. We now develop this further, and use it to study the G(n, p) graph in
the subcritical regime.

Part (a)

Let An be the set of active nodes (i.e., nodes which have been uncovered, but whose descendants
have not yet been uncovered) after n steps. We start with A0 = 1, and have: An = An−1 − 1 + Yn,
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where Yn is the number of offspring of the active node uncovered in the nth step. Let TDFS denote
the time when the DFS procedure stops, i.e., the first time when there are no more active nodes
to explore. Argue that:

TDFS = 1 +

TDFS∑
i=1

Yi

Note: There was a typo in the recurrence equation in the HW.

Solution: Using the recurrence equation, we have that for all t ≤ TDFS ,

At = A0 +
t∑
i=1

Yi − t.

Moreover, by definition ATDFS = 0. Hence, we have that:

TDFS = 1 +

TDFS∑
i=1

Yi.

Part (b)

Let X be the total number of nodes in a Galton-Watson tree at the moment it stops growing. What
is the relation between X and TDFS? Also argue that:

P[X > k] ≤ e−kh(Y )

where h(Y ) = supθ≥0
[
θ − lnE[eθY ]

]
.

Solution: In DFS, we explore the nodes one by one – hence X = TDFS , and X = 1 +
∑X

i=1 Yi.
Now from the DFS procedure we have:

P[X > k] = P[A1 > 0, · · · , Ak > 0] ≤ P[Ak > 0]

= P

[
A0 +

k∑
i=1

Yi − k > 0

]
= P

[
k∑
i=1

Yi ≥ k

]
= P

[
eθ0

∑k
i=1 Yi ≥ eθ0k

]
,

for any θ > 0. Now, using Markov’s inequality, and since Yi are independent, we get:

P[X > k] ≤ inf
θ≥0

E
[
eθY
]k

eθk
= e−k supθ≥0(θ−lnE[eθY ]) = e−kh(Y ).
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Part (c)

Next, we use this DFS technique to study the G(n, p) graph. Starting from some node v, we
perform a DFS as in the GW tree – again we have Ak denoting the number of active nodes after
k explorations, with A0 = 1. Also note that after k explorations, the number of nodes not yet
discovered by the DFS is Uk = n− k −Ak. Argue that Uk ∼ Binomial(n− 1, (1− p)k).

Solution: After k steps of the DFS, we have explored k nodes, and uncovered Ak active nodes
– the number of nodes not yet discovered is thus Uk = n − k − Ak. Now note that for a node u
to be undiscovered after k explorations, we need all the potential edges from the first k explored
nodes to u to be missing – this happens with probability (1 − p)k. Now, since we started with 1
discovered and n− 1 undiscovered nodes, thus Uk ∼ Binomial(n− 1, (1− p)k).

Part (d)

Using the above result, we have that n − 1 − Uk = Ak + k − 1 is distributed as Binomial(n −
1, 1 − (1 − p)k). Also note that a necessary condition for the connected component C(v) around
v to be bigger than k is that the active set after k explorations is non-empty. Thus we have:
P[|C(v)| > k] ≤ P[Ak > 0]. Let np = λ – now show that:

P[|C(v)| > k] ≤ e−kh(λ),

where h(λ) = supθ≥0
[
θ + λ(1− eθ)

]
Hint: Use the following ‘stochastic dominance’ relation (try to convince yourself why this is true):

P[Bin(n− 1, 1− (1− p)k) > a] ≤ P[Bin(n, pk) > a] ,∀ a

.

Solution: First, note that n = k + Ak + Uk, since all nodes are either explored, active or
undiscovered. Moreover, if X ∼ Binomial(m, q), then m − X ∼ Binomial(m, 1 − q) – now
since Uk ∼ Binomial(n − 1, (1 − p)k), therefore n − 1 − Uk = Ak + k − 1 is distributed as
Binomial(n− 1, 1− (1− p)k).

Moreover, for C(v) > k, a necessary condition is that the active set Ak after k explorations
is non-empty (this is not sufficient, as the active set could have become empty before the kth

exploration) – thus P[|C(v)| > k] ≤ P[Ak > 0]. Now from the previous result, we have:

P[|C(v)| > k] ≤ P[Ak > 0] = P[Ak + k − 1 > k]

= P[Binomial(n− 1, 1− (1− p)k) > k]

≤ P[Binomial(n, pk) > k]

≤ inf
θ≥0

e−θkE[eθBin(n,pk)] = inf
θ≥0

(1− pk(1− eθ))ne−θk

≤ inf
θ≥0

e−npk(1−e
θ)−θk = e−k supθ≥0(λ(1−eθ)+θ) = e−kh(λ)
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Part (e)

If λ < 1, show that h(λ) > 0, and using this, argue that:

P

[⋃
v∈V

{
|C(v)| > 2 log n

h(λ)

}]
≤ 1

n

Note: This question was incomplete in the HW.

Solution: First, note that for θ > 0 we have e−θ > 1− θ. Now we have

θ + λ(1− eθ) = eθ(e−θ(θ + λ)− λ)

≥ eθ((1− θ)(θ + λ)− λ)

= θeθ(1− θ − λ)

Now if λ < 1, then we can always choose θ ∈ (0, 1− λ) to ensure that θ+ λ(1− eθ) > 0. Hence
h(λ) = supθ≥0(λ(1− eθ) + θ) > 0.

Now, using the union bound, we have:

P

[⋃
v∈V

{
|C(v)| > 2 log n

h(λ)

}]
≤
∑
v∈V

P

[
|C(v)| > 2 log n

h(λ)

]
≤ ne−

2 logn
h(λ)

h(λ) ≤ 1

n

Problem 5: (The Reed-Frost Epidemic Model)

In class we’ll study the SIS epidemic model, where a node alternates between being infected and
being susceptible. An alternate model with node recovery is called the SIR model. Here, as in
the basic SI model, nodes are initial susceptible (S) to the infection, and get infected (I) due
to interactions with infected neighbors – in particular, every pair of nodes meet according to an
independent Poisson process with rate λ, and if an infected node meets a susceptible node, then
the latter gets infected. In addition, we now model node recovery by assuming that an infected
node i remains infected for a time Ti, after which she becomes resistant (R) to the infection – at
this point she does not affect any other node in future.

Part (a)

Let (NS(t), NI(t), NR(t)) be the number of susceptible, infected and resistant nodes at any time
t, and Ti ∼ Exponential(1). Argue that (NS(t), NI(t), NR(t)) forms a Markov chain, and write
the state-transitions for different states (ns, ni, nr). What are the absorbing states (if any) of this
Markov chain?
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Solution: Since we are considering the SIS infection on the complete graph, hence by symmetry,
it is clear that (NS(t), NI(t), NR(t)) forms a Markov chain. In particular, the state transitions
obey:

(ns, ni, nr)→ (ns, ni − 1, nr + 1) at rate ni

(ns, ni, nr)→ (ns − 1, ni + 1, nr) at rate λnsni

Now if ni = 0, then it is clear that there are no state transitions – thus, all states of the form
(k, 0, n− k) , k ∈ [n] are absorbing states of the chain.

Part (b)

Suppose the Ti’s are all constant (in particular, let Ti = 1 ∀ i), and suppose the infection starts
at a single node v. Argue now that the number of nodes that are eventually resistant to the SIR
epidemic is the same as the connected component around v in a G(n, p) graph. What value of λ is
required to ensure that a constant fraction of all nodes experience the infection?

Solution: Consider any node v which gets infected at time t – now for any neighbor w of v which
is susceptible at time t, it gets infected by v if and only if v meets w before recovering. This
happens with probability 1 − e−λ (i.e., it is equivalent to checking if an Exponential(λ) r.v. is
< 1). Note also that this holds independently for all. More generally, let Xwv be the indicator that
v meets a neighbor w before recovering – then Xwv is i.i.d Bernoulli(1− e−λ). Suppose we instead
construct a G(n, 1− e−λ) graph over the nodes V . Now if we start an infection at a node v, then
the edges out of v can be thought to represent all nodes visited while infected – hence these nodes
get infected. However, for each of these nodes, their outgoing edges again represent nodes visited
while being infected – any of these which were not infected before are now infected.

Thus, the SIR infection (with recovery time = 1) is identical to doing a BFS of the neighborhood
of v – clearly the set of nodes infected correspond to the connected component around v. We know
that in order to have a giant component, we need np > 1 – thus, we need n(1 − e−λ) > 1, i.e.,
λ > lnn− ln(n− 1).

Problem 6: (Time to Absorption in the Gambler’s Ruin)

In class you saw the gambler’s ruin problem, where a pair of gamblers A (starting with $a) and B
(starting with $b; here a, b are positive integers), play a series of independent games, each of which
results in A winning a dollar from B with probability 1/2, else losing a dollar to B. Let T be
the time when the game ends (i.e., when either player loses all their money). Using first-transition
analysis, show that E[T ] = a · b.
Hint: Define Ti be the time to absorption if A starts with $i and B with $(a + b − i); we want to
find E[T ] = E[Ta]. Now write a recurrence relation between the E[Ti]. What is E[T0] and E[Ta+b]?
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Solution: Let Ti be the time to absorption if A starts with $i and B with $(a+ b− i). Then, for
0 < i < a+ b we can get the following recurrence:

E[Ti] =
1

2
(1 + E[Ti−1]) +

1

2
(1 + E[Ti+1]).

Also, note that E[T0] = 0 and E[Ta+b] = 0. Therefore, from recurrence equations, for 0 ≤ i ≤ a+ b,
we will get

E[Ti] = i(a+ b− i).

And hence, E[T ] = E[Ta] = ab.
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