ORIE 4520: Stochastics at Scale Homework 6: Due November 18th, 12pm
Fall 2015 Sid Banerjee (sbanerjee@cornell.edu)

Problem 1: (The Flajolet-Martin Counter)

In class (and in the prelim!), we looked at an idealized algorithm for finding the number of distinct
elements in a stream, where we sampled uniform random variables for each item, and then stored
their minimum value. One way to implement this in practice is via the Flajolet-Martin counter:

Suppose we have a stream (X7, Xo, ..., X,,) of m items, where each item X; corresponds to an
element in [n]. Assume n is a power of 2, and k = logy n. Let h be a hash function that maps each
of the elements in [n] to k bits — in particular, let us denote h(x) = (b1 (z), b2(x), ..., bx(x)) for each
x € [n]), and assume that each bit k£ independently satisfies P[by(z) = 0] = Plbg(z) = 1] = 1/2
for every pair € [n]. For every z € [n], let r(z) be the number of trailing 0’s in h(x) — so for
example, for n = 16 (i.e., k = 4), h(x) = 0100 means r(z) = 2, h(z) = 1000 means r(x) = 3, and
so on). Finally, let R = max;{r(X;)} — i.e., the maximum number of trailing 0’s in the hashes of
the items in the stream.

Part (a)

For any element = € [n], let Y;j(z) be the indicator that r(z) = j. Argue that E[Y;(z)] = 1/2/TL.

Part (b)

Let Fy be the number of distinct elements in the stream, and define N; to be the number of elements
in the stream for which r(z) > j. Show that:

o Fy 1
BN = it o Var() = 5% (1= 5 ) <IN

Hint: Write N; in terms of Y;(X;).

Part (c)

Suppose we use 2% as an estimator for Fy. Argue that for any j, P[R > j] > P[N; > 0]. Next,
assuming that Fj is a power of 2, show that:

1
P[R < logy(Fp) — ] < %

Hint: Use Chebyshev to bound P[N; = 0].

Part (d)
On the other hand, argue that P[R > j] <3~ E[Nj], and hence show that:

1
PIR > logy(Fo) +¢] < o
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Problem 2: (An Alternate All-Pair Distance Sketch)

In class we saw an All-Pairs Distance Sketch (ADS) by Das-Sarma et al., which for each node v
stored a sketch S(v) with distances to O(logn) other nodes, and then given any pair (u,v), used
the to sketches to compute a shortest-path estimate within a multiplicative ‘stretch’ of O(logn).
We’ll now see an alternate ADS proposed by Cohen et al.

We are given an undirected weighted graph G(V, E), where each edge (u,v) € E has some weight
Wy, > 0 corresponding to its length. The shortest path distance d*(u, v) between any nodes v and v
is the minimum sum of weights over all paths from u to v. For convenience, assume that the weights
are such that each pair of nodes has a unique shortest-path distance. Thus for any given node v, we
can uniquely sort all nodes in V' in increasing order of distance, to get V,, = {v, w1, wa, ...}, where
d*(v,w;) < d*(v,w;41)}. Moreover, for each node v € V', we generate an i.i.d random variable R(v)
which is Uni form|0, 1] distributed.

Part (a)

To generate the ADS S(v), we first initialize S(v) = (v,0, R(v)); then sequentially pick nodes w;
from the shortest-path ordering V,, = {v, w1, ws, ...}, and add (w;, d*(v, w;), R(w;)) to S(v) if R(w;)
is smaller than R(u) for all u € S(v). What is the expected number of nodes in S(v)?

Hint: Recall the random sampling from stream algorithm in the prelim.

Part (b)

Given two nodes u and v, to estimate their distance, we first find all nodes w in S(u)N.S(v), and then
compute d(u,v) = min,ecgw)nsw) 4" (v, w) + d*(w,v). We now argue that d(u,v) < logy nd*(u,v)
with constant probability (which we can then amplify by taking independent ADS).

Argue first that for any pair of nodes u and v, we have that [S(u) N .S(v)| > 0.

Part (c)

As we did in class, for any node v and distance d, define By(v) = {u € V|d*(v,u) < d}, i.e., the set
of nodes within a distance of d from v. Now for any given pair u, v, let d = d*(u,v). Argue that:

By(v) € Baa(u) € Bsa(v) € ...,

and in general, for any k € {1,2,..., Brq(v) € Bq1)a(w)

Part (d)

For convenience, let m = logyn be an even integer. Now for every pair (u,v), given the sequence
of nested sets By(v) C Bag(u) C Bzq(v) € ... € Bn_1)a(v) € Ba(u), argue (by contradiction)
that there exists at least one pair of consecutive sets (i.e., B(ar_1)q(v) € Bagya(u) or Barg(u) C
Bak H)d(fu)) such that that the larger set’s cardinality is less than twice that of the smaller set.
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Part (e)

Finally, for a given pair u,v with shortest distance d, and any k € {1,2,...,m}, we want to find
the probability that a node in Bgg4(v) is present in both ADS sketches S(u), S(v). Argue that:

| Bra(v)|
Plw e S(u) N S(v)|w € Bra(v)] = 50—
| Bkt1ya(u)]
This put together with the previous parts shows that with probability at least 1/2, the ADS sketch

~

returns an estimate d(u,v) < md*(u,v).
Hint: Recall the MinHash sketch.
Problem 3: (The Galton-Watson Branching Process)

In class we saw the Galton-Watson branching process:

Xn
Xn+1 = E Yn,ia
=1

where X,, is the number of descendants at the nt" level of the GW tree, and Y, ~ Y isiid
number of descendants of each node. Let us denote P[Y = k] = pg, E[Y] = u, Var(Y) = 02 and
G(s) = E[s¥]. We now try to derive some quantities of interest, in order to understand the GW
process.

Part (a)

Prove that E[X,,+1] = pE[X,,], and hence argue that E[X,,] = p”. Using this, show that if p < 1,
then P[X,, > 0] = o(1) (i.e., it goes to 0 as n — 00).

Part (b)

Assuming p # 0, prove that:

Part (c)

Recall we defined the pgf G, (s) = E[sX"], and also defined T to be the time to extinction, (i.e. T =
inf,~0 {X, = 0}), 7» = P[X,, = 0] to be the probability of extinction, and v = P[lim,_,~ X;,, = 0]
as the probability of ultimate extinction. We now see how we can compute 7', v, and ~ using the

pef.
Suppose Y ~ Bernoulli(p), i.e., pr = p,po = 1 — p. — show that:

n—1
Gn(s) = (1—p) <Zp"> +p"s
=1

Using the above result, show that T is distributed as Geometric(1—p), i.e., P[T = k] = (1—p)p*~1.
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Part (d)

Suppose instead Y ~ Geometric(l — p); find v, the probability of ultimate extinction.

Problem 4: (The DFS view of the GW Tree and Random Graph)

In class, we also discussed an alternate way of studying the Galton-Watson process, by expanding
it using a depth-first search. We now develop this further, and use it to study the G(n,p) graph in
the subcritical regime.

Part (a)

Let A, be the set of active nodes (i.e., nodes which have been uncovered, but whose descendants
have not yet been uncovered) after n steps. We start with Ay = 1, and have: 4,11 = A, +Y,,
where Y, is the number of offspring of the active node uncovered in the n*”* step. Let Tprg denote
the time when the DFS procedure stops, i.e., the first time when there are no more active nodes
to explore. Argue that:

Tprs

Tprs =1+ Z Y;
i=1

Part (b)

Let & be the total number of nodes in a Galton-Watson tree at the moment it stops growing. What
is the relation between X and Tprg? Also argue that:

P[X > k] < e (Y

where h(Y) = supysq [0 — InE[e?]].

Part (c)

Next, we use this DFS technique to study the G(n,p) graph. Starting from some node v, we
perform a DFS as in the GW tree — again we have Aj denoting the number of active nodes after
k explorations, with Ay = 1. Also note that after k explorations, the number of nodes not yet
discovered by the DFS is Uy = n — k — Aj. Argue that Uy, ~ Binomial(n — 1, (1 — p)¥).

Part (d)

Using the above result, we have that n — 1 — Uy = A + k — 1 is distributed as Binomial(n —
1,1 — (1 — p)¥). Also note that a sufficient condition for the connected component C(v) around
v to be bigger than k is that the active set after k£ explorations is non-empty. Thus we have:
P[|C(v)| > k] < P[A; > 0]. Let np = XA — now show that:

P[|C(v)| > k] < e FhV,
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where h(X) = supgsq [0 + A(1 — €)]
Hint: Use the following ‘stochastic dominance’ relation (try to convince yourself why this is true):

P[Bin(n — 1,1 — (1 — p)*) > a] < P[Bin(n,pk) > a],Ya

Part (e)
If A < 1, then it is easy to show that h(\) <0

Problem 5: (The Reed-Frost Epidemic Model)

In class we’ll study the SIS epidemic model, where a node alternates between being infected and
being susceptible. An alternate model with node recovery is called the SIR model. Here, as in
the basic SI model, nodes are initial susceptible (S) to the infection, and get infected (I) due
to interactions with infected neighbors — in particular, every pair of nodes meet according to an
independent Poisson process with rate A, and if an infected node meets a susceptible node, then
the latter gets infected. In addition, we now model node recovery by assuming that an infected
node i remains infected for a time T;, after which she becomes resistant (R) to the infection — at
this point she does not affect any other node in future.

Part (a)

Let (Ng(t), N7(t), Ngr(t)) be the number of susceptible, infected and resistant nodes at any time
t, and T; ~ Exponential(1l). Argue that (Ng(t), Ni(t), Nr(t)) forms a Markov chain, and write
the state-transitions for different states (ns,n;,n;). What are the absorbing states (if any) of this
Markov chain?

Part (b)

Suppose the T;’s are all constant (in particular, let 7; = 1V1), and suppose the infection starts
at a single node v. Argue now that the number of nodes that are eventually resistant to the SIR
epidemic is the same as the connected component around v in a G(n, p) graph. What value of \ is
required to ensure that a constant fraction of all nodes experience the infection?

Problem 6: (Time to Absorption in the Gambler’s Ruin)

In class you saw the gambler’s ruin problem, where a pair of gamblers A (starting with $a) and B
(starting with $b; here a, b are positive integers), play a series of independent games, each of which
results in A winning a dollar from B with probability 1/2, else losing a dollar to B. Let T be
the time when the game ends (i.e., when either player loses all their money). Using first-transition
analysis, show that E[T] = a - b.

Hint: Define T; be the time to absorption if A starts with $i and B with $(a + b —i); we want to
find E[T| = E[T,]. Now write a recurrence relation between the E[T;]. What is E[Ty] and E[T,p]?
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