ORIE 4520: Stochastics at Scale Homework 5: Due October 20th, 12pm
Fall 2015 Sid Banerjee (sbanerjee@cornell.edu)

Problem 1: (LSH for Angular Similarity)

For any vectors z,y € R?, the angular distance is the angle (in radians) between the two vectors

— formally, dg(z,y) = cos™? (W) (where cos™!(+) returns the principle angle, i.e., angles in
[0,7]). The (normalized) angular similarity is given by sg(x,y) =1 — dp(x,y) /7.

We now want to construct a LSH for the angular similarity metric. Consider the following
family of hash functions: we first choose a random unit vector o (i.e., o € R? with ||o||2 = 1), and
for any vector x, define h,(z) = sgn(z.o) (i.e., the sign of the dot product of z and o). Argue that
for any z,y € RY, we have:

Plhs(2) = ho(y)] = se(2,y)

Hint: For any pair © and y in RY, there is a unique plane passing through the origin containing
and y — convince yourself that dg(x,y) is precisely the angle between x and y in this plane. Also,
given any vector o, its dot product with x and y only depends on the projection of o on this plane.
Now what can you say about the signs of the dot products of x and y with a random unit vector?

Problem 2: (Choosing LSH Parameters for Nearest Neighbors)

An important routine in many clustering/machine learning algorithms is the (¢, R)-Nearest-Neighbors
(or (¢, R)-NN) problem: given a set of n points V' and a distance metric d, we want to store V in
order to support the following query:

Given a query point q, if there exists x € V' such that d(z,q) < R then, with probability at least
1 — 6, we must output a point ' € V', such that d(2',q) < cR.

We now show how to solve this problem using LSH. Assume that we are given a (R, cR, p1,p2)-
sensitive hash family H !. As in class, we can amplify the probabilities by first taking the AND of
r such hash functions to get a new family H,,4; next, we can take the OR of b hash functions from
Hanp to get another family Horp_anD-

Given the set V', we hash each element using a single hash function g from Hor—anp (which
corresponds to b x r hash functions from H). Now given a query point ¢, we hash ¢ using our
cascaded hash-function g, and find all y € V such that g(y) = g(¢) — let this set be denoted Y.
Finally, we can check d(g,y) for each y in Y;, and return those y for whom d(q,y) < cR.

Part (a)

If there exists € V such that d(x,q) < R then, argue that we output x with probability 1—(1—p§)b.
On the other hand, also show that the expected number of false positives (i.e., points 2’ € V such
that d(2/,q) > ¢R) that we consider is np}.

Part (b)

Note that since we are checking explicitly for false positives, we never output one — however, we
have O(1) runtime cost for each false positive (to check its distance). Choose r to ensure that the

'Recall in class we defined a (d1, d2, p1, p2)—sensitive hash family — for convenience, we are setting the distances
to R and cR
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expected number of false-positives is 1. Using this choice of r, show that for guarantee we desire

for the (¢, R)-NN problem, we need to choose b = n”1n(1/4§), where p = %28;;;))

Problem 3: (More on the Morris’ Counter)

Recall in class we saw the basic Morris counter, wherein we initiated the counter to 1 when one
item arrived, and upon each subsequent arrival, incremented the counter with probability 1/2%.
We also showed that after n items have arrived, E[2X] =n + 1.

Part (a)

Prove that the variance of the counter is given by:

n2—n

2

Using this, find the probability that the average of k Morris counters is less than n + 1 — en after
n items have passed.

Hint: Use induction for E[22X].

Var(2X) =

Part (b)

Next, suppose we modify the counter as follows: we still initialize counter Y to 1 when the first item
arrives, but on every subsequent arrival, we increment the counter by 1 with probability 1/(1+a)Y,
for some a > 0. Let Y,, be the counter-state after n items have arrived — choose constants b, ¢ such
that b- (14 a)¥" + ¢ is an unbiased estimator for the number of items (i.e., E[b- (1+a)¥ +¢] = n).

Part (c) (OPTIONAL)

Now suppose you are restricted to use a single Morris counter, but can choose a as above. Find
the variance of the estimator, and using Chebyshev, find the required a to ensure that the estimate
is within n + en with probability at least 1 — §. What is the expected storage required by this
counter?

Problem 4: (Dyadic Partitions and the Count-Min Sketch)

In this problem, we modify the Count-Min sketch to give estimates for range queries and heavy-
hitters. For this, we first need an additional definition. For convenience, assume n = 2¥; the dyadic
partitions of the set [n] are defined as follows:

Iy = {{1}7 {2}7 B {n}}
7 ={{1,2},{3,4},...,{n —1,n}}
T, ={{1,2,3,4},{5,6,7,8},....{n—3,n—2,n — 1,n}}

Tp = {{1,2,...,n}}


mailto:sbanerjee@cornell.edu

ORIE 4520: Stochastics at Scale Homework 5: Due October 20th, 12pm
Fall 2015 Sid Banerjee (sbanerjee@cornell.edu)

Part (a)

Let Z = Ty UZ  U. . .UT} be the set of all dyadic intervals. Show that |Z| < 2n. Moreover, show that
any interval [a,b] = {a,a+1,...,b} can be written as a disjoint union of at most 2log, n sets from
Z. (For example, for n = 16 = 2%, the set [6,15] can be written as {6} U {7,8} U {9,10,11,12} U
{13,14} U {15}, which is less than 2 x 4 = 8 sets.)

Part (b)

In class, given a stream of m elements, we saw how to construct a Count-Min sketch for the
frequencies of items i € [n], and how to use it for point queries (i.e., to estimate f; for some i € [n]).
We now extend this to range queries — estimating Fj, ;) = Z?:a fi for given a,b.

Note first that the basic Count-Min sketch can be interpreted as constructing a sketch for
frequencies of set-membership for the sets in Iy. We have also seen how to make hash functions
for general set-membership (for example, the Bloom filter!) — we can thus extend the Count-Min
sketch to include an estimate for the frequencies of all the dyadic intervals. Using this new sketch,
show that for a given range query [a,b] , we can use a Count-Min sketch with R = log(1/§) rows
and B = 2/e columns to get an estimate Flqp) satisfying:

P | Floy < Z fi+2melogn| >1-6
i€(a,b]

Part (c)

The ¢-heavy-hitters (or ¢-HH) query is defined as follows:

Given stream {x1,2a,...,Tm} with x; € [n], and some constant ¢ € [0,1], we want to output a
subset L C [n] such that, with probability at least 1 — &, L contains all i € [n] such that f; > ¢m,
and moreover, every i € L satisfies f; > ¢m/2.

We now adapt the above sketch for the ¢-HH problem. First, using the union bound, argue that
if we choose 6 = v/n, then we have that for all dyadic intervals I € Z, we have that the frequency
estimate F7 obeys: P [F] <D erfit+ me] > 1— 9. Thus, argue that if we use € < ¢/2, then the
set of all i € [n] such that Fy;; > ¢m is a solution to the ¢-HH problem.

Part (d)

Note though that the brute force way to find all ¢ € [n] such that Fiiy > ¢m requires n point
queries. Briefly argue how you can use the frequency estimates F; for the dyadic intervals to find
the same using O(logn/¢) queries.

Hint: Consider a binary tree defined by the dyadic intervals, with the root as Logn = {[n]}, and the
leaves as Iy = {{1},{2},...,{n}}. Argue that for every heavy-hitter node i, every parent node in
the tree has Fr > ¢m. Also, at any level j, how many sets I € I; can have Fr > ¢m?
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