Fall 2015 ## Problem 1: (LSH for Angular Similarity) For any vectors $x, y \in \mathbb{R}^d$, the angular distance is the angle (in radians) between the two vectors – formally, $d_{\theta}(x, y) = \cos^{-1}\left(\frac{x \cdot y}{||x||_2||y||_2}\right)$ (where $\cos^{-1}(\cdot)$ returns the principle angle, i.e., angles in $[0, \pi]$). The (normalized) angular similarity is given by $s_{\theta}(x, y) = 1 - d_{\theta}(x, y)/\pi$. We now want to construct a LSH for the angular similarity metric. Consider the following family of hash functions: we first choose a random unit vector σ (i.e., $\sigma \in \mathbb{R}^d$ with $||\sigma||_2 = 1$), and for any vector x, define $h_{\sigma}(x) = sgn(x.\sigma)$ (i.e., the sign of the dot product of x and σ). Argue that for any $x, y \in \mathbb{R}^d$, we have: $$\mathbf{P}[h_{\sigma}(x) = h_{\sigma}(y)] = s_{\theta}(x, y)$$ Hint: For any pair x and y in \mathbb{R}^d , there is a unique plane passing through the origin containing x and y – convince yourself that $d_{\theta}(x,y)$ is precisely the angle between x and y in this plane. Also, given any vector σ , its dot product with x and y only depends on the projection of σ on this plane. Now what can you say about the signs of the dot products of x and y with a random unit vector? # Problem 2: (Choosing LSH Parameters for Nearest Neighbors) An important routine in many clustering/machine learning algorithms is the (c, R)-Nearest-Neighbors (or (c, R)-NN) problem: given a set of n points V and a distance metric d, we want to store V in order to support the following query: Given a query point q, if there exists $x \in V$ such that $d(x,q) \leq R$ then, with probability at least $1 - \delta$, we must output a point $x' \in V$, such that $d(x',q) \leq cR$. We now show how to solve this problem using LSH. Assume that we are given a (R, cR, p_1, p_2) sensitive hash family H^{-1} . As in class, we can amplify the probabilities by first taking the AND of r such hash functions to get a new family H_{and} ; next, we can take the OR of b hash functions from H_{AND} to get another family H_{OR-AND} . Given the set V, we hash each element using a single hash function g from H_{OR-AND} (which corresponds to $b \times r$ hash functions from H). Now given a query point q, we hash q using our cascaded hash-function g, and find all $y \in V$ such that g(y) = g(q) – let this set be denoted Y_q . Finally, we can check d(q, y) for each y in Y_q , and return those y for whom d(q, y) < cR. #### Part (a) If there exists $x \in V$ such that $d(x,q) \leq R$ then, argue that we output x with probability $1-(1-p_1^r)^b$. On the other hand, also show that the expected number of false positives (i.e., points $x' \in V$ such that d(x',q) > cR) that we consider is np_2^r . ### Part (b) Note that since we are checking explicitly for false positives, we never output one – however, we have O(1) runtime cost for each false positive (to check its distance). Choose r to ensure that the ¹Recall in class we defined a (d_1, d_2, p_1, p_2) —sensitive hash family – for convenience, we are setting the distances to R and cR expected number of false-positives is 1. Using this choice of r, show that for guarantee we desire for the (c, R)-NN problem, we need to choose $b = n^{\rho} \ln(1/\delta)$, where $\rho = \frac{\ln(1/p_1)}{\ln(1/P_2)}$. ## Problem 3: (More on the Morris' Counter) Recall in class we saw the basic Morris counter, wherein we initiated the counter to 1 when one item arrived, and upon each subsequent arrival, incremented the counter with probability $1/2^X$. We also showed that after n items have arrived, $\mathbf{E}[2^X] = n + 1$. ## Part (a) Prove that the variance of the counter is given by: $$Var(2^{X_n}) = \frac{n^2 - n}{2}$$ Using this, find the probability that the average of k Morris counters is less than $n + 1 - \epsilon n$ after n items have passed. Hint: Use induction for $\mathbf{E}[2^{2X}]$. ### Part (b) Next, suppose we modify the counter as follows: we still initialize counter Y to 1 when the first item arrives, but on every subsequent arrival, we increment the counter by 1 with probability $1/(1+a)^Y$, for some a > 0. Let Y_n be the counter-state after n items have arrived – choose constants b, c such that $b \cdot (1+a)^{Y_n} + c$ is an unbiased estimator for the number of items (i.e., $\mathbf{E}[b \cdot (1+a)^{Y_n} + c] = n$). ### Part (c) (OPTIONAL) Now suppose you are restricted to use a single Morris counter, but can choose a as above. Find the variance of the estimator, and using Chebyshev, find the required a to ensure that the estimate is within $n \pm \epsilon n$ with probability at least $1 - \delta$. What is the expected storage required by this counter? ### Problem 4: (Dyadic Partitions and the Count-Min Sketch) In this problem, we modify the Count-Min sketch to give estimates for range queries and heavy-hitters. For this, we first need an additional definition. For convenience, assume $n = 2^k$; the dyadic partitions of the set [n] are defined as follows: $$\mathcal{I}_0 = \{\{1\}, \{2\}, \dots, \{n\}\}\$$ $$\mathcal{I}_1 = \{\{1, 2\}, \{3, 4\}, \dots, \{n - 1, n\}\}\$$ $$\mathcal{I}_2 = \{\{1, 2, 3, 4\}, \{5, 6, 7, 8\}, \dots, \{n - 3, n - 2, n - 1, n\}\}\$$ $$\vdots$$ $$\mathcal{I}_k = \{\{1, 2, \dots, n\}\}\$$ Sid Banerjee (sbanerjee@cornell.edu) ## Part (a) Let $\mathcal{I} = \mathcal{I}_0 \cup \mathcal{I}_1 \cup \ldots \cup \mathcal{I}_k$ be the set of all dyadic intervals. Show that $|\mathcal{I}| \leq 2n$. Moreover, show that any interval $[a, b] = \{a, a + 1, \ldots, b\}$ can be written as a disjoint union of at most $2 \log_2 n$ sets from \mathcal{I} . (For example, for $n = 16 = 2^4$, the set [6, 15] can be written as $\{6\} \cup \{7, 8\} \cup \{9, 10, 11, 12\} \cup \{13, 14\} \cup \{15\}$, which is less than $2 \times 4 = 8$ sets.) ## Part (b) In class, given a stream of m elements, we saw how to construct a Count-Min sketch for the frequencies of items $i \in [n]$, and how to use it for point queries (i.e., to estimate f_i for some $i \in [n]$). We now extend this to range queries – estimating $F_{[a,b]} = \sum_{i=a}^{b} f_i$ for given a, b. Note first that the basic Count-Min sketch can be interpreted as constructing a sketch for frequencies of set-membership for the sets in I_0 . We have also seen how to make hash functions for general set-membership (for example, the Bloom filter!) – we can thus extend the Count-Min sketch to include an estimate for the frequencies of all the dyadic intervals. Using this new sketch, show that for a given range query [a, b], we can use a Count-Min sketch with $R = log(1/\delta)$ rows and $B = 2/\epsilon$ columns to get an estimate $F_{[a,b]}$ satisfying: $$\mathbf{P}\left[F_{[a,b]} < \sum_{i \in [a,b]} f_i + 2m\epsilon \log n\right] \ge 1 - \delta$$ ## Part (c) The ϕ -heavy-hitters (or ϕ -HH) query is defined as follows: Given stream $\{x_1, x_2, ..., x_m\}$ with $x_i \in [n]$, and some constant $\phi \in [0, 1]$, we want to output a subset $L \subset [n]$ such that, with probability at least $1 - \delta$, L contains all $i \in [n]$ such that $f_i \geq \phi m$, and moreover, every $i \in L$ satisfies $f_i \geq \phi m/2$. We now adapt the above sketch for the ϕ -HH problem. First, using the union bound, argue that if we choose $\delta = \gamma/n$, then we have that for all dyadic intervals $I \in \mathcal{I}$, we have that the frequency estimate F_I obeys: $\mathbf{P}\left[F_I < \sum_{i \in I} f_i + m\epsilon\right] \geq 1 - \delta$. Thus, argue that if we use $\epsilon < \phi/2$, then the set of all $i \in [n]$ such that $F_{\{i\}} > \phi m$ is a solution to the ϕ -HH problem. #### Part (d) Note though that the brute force way to find all $i \in [n]$ such that $F_{\{i\}} > \phi m$ requires n point queries. Briefly argue how you can use the frequency estimates F_I for the dyadic intervals to find the same using $O(\log n/\phi)$ queries. Hint: Consider a binary tree defined by the dyadic intervals, with the root as $I_{\log n} = \{[n]\}$, and the leaves as $I_0 = \{\{1\}, \{2\}, \dots, \{n\}\}$. Argue that for every heavy-hitter node i, every parent node in the tree has $F_I > \phi m$. Also, at any level j, how many sets $I \in \mathcal{I}_j$ can have $F_I > \phi m$?