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Problem 1: (LSH for Angular Similarity)

For any vectors x, y ∈ Rd, the angular distance is the angle (in radians) between the two vectors

– formally, dθ(x, y) = cos−1
(

x.y
||x||2||y||2

)
(where cos−1(·) returns the principle angle, i.e., angles in

[0, π]). The (normalized) angular similarity is given by sθ(x, y) = 1− dθ(x, y)/π.
We now want to construct a LSH for the angular similarity metric. Consider the following

family of hash functions: we first choose a random unit vector σ (i.e., σ ∈ Rd with ||σ||2 = 1), and
for any vector x, define hσ(x) = sgn(x.σ) (i.e., the sign of the dot product of x and σ). Argue that
for any x, y ∈ Rd, we have:

P[hσ(x) = hσ(y)] = sθ(x, y)

Hint: For any pair x and y in Rd, there is a unique plane passing through the origin containing x
and y – convince yourself that dθ(x, y) is precisely the angle between x and y in this plane. Also,
given any vector σ, its dot product with x and y only depends on the projection of σ on this plane.
Now what can you say about the signs of the dot products of x and y with a random unit vector?

Problem 2: (Choosing LSH Parameters for Nearest Neighbors)

An important routine in many clustering/machine learning algorithms is the (c,R)-Nearest-Neighbors
(or (c,R)-NN) problem: given a set of n points V and a distance metric d, we want to store V in
order to support the following query:
Given a query point q, if there exists x ∈ V such that d(x, q) ≤ R then, with probability at least
1− δ, we must output a point x′ ∈ V , such that d(x′, q) ≤ cR.

We now show how to solve this problem using LSH. Assume that we are given a (R, cR, p1, p2)-
sensitive hash family H 1. As in class, we can amplify the probabilities by first taking the AND of
r such hash functions to get a new family Hand; next, we can take the OR of b hash functions from
HAND to get another family HOR−AND.

Given the set V , we hash each element using a single hash function g from HOR−AND (which
corresponds to b × r hash functions from H). Now given a query point q, we hash q using our
cascaded hash-function g, and find all y ∈ V such that g(y) = g(q) – let this set be denoted Yq.
Finally, we can check d(q, y) for each y in Yq, and return those y for whom d(q, y) < cR.

Part (a)

If there exists x ∈ V such that d(x, q) ≤ R then, argue that we output x with probability 1−(1−pr1)b.
On the other hand, also show that the expected number of false positives (i.e., points x′ ∈ V such
that d(x′, q) > cR) that we consider is npr2.

Part (b)

Note that since we are checking explicitly for false positives, we never output one – however, we
have O(1) runtime cost for each false positive (to check its distance). Choose r to ensure that the

1Recall in class we defined a (d1, d2, p1, p2)−sensitive hash family – for convenience, we are setting the distances
to R and cR
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expected number of false-positives is 1. Using this choice of r, show that for guarantee we desire
for the (c,R)-NN problem, we need to choose b = nρ ln(1/δ), where ρ = ln(1/p1)

ln(1/P2)
.

Problem 3: (More on the Morris’ Counter)

Recall in class we saw the basic Morris counter, wherein we initiated the counter to 1 when one
item arrived, and upon each subsequent arrival, incremented the counter with probability 1/2X .
We also showed that after n items have arrived, E[2X ] = n+ 1.

Part (a)

Prove that the variance of the counter is given by:

V ar(2Xn) =
n2 − n

2

Using this, find the probability that the average of k Morris counters is less than n+ 1− εn after
n items have passed.
Hint: Use induction for E[22X ].

Part (b)

Next, suppose we modify the counter as follows: we still initialize counter Y to 1 when the first item
arrives, but on every subsequent arrival, we increment the counter by 1 with probability 1/(1+a)Y ,
for some a > 0. Let Yn be the counter-state after n items have arrived – choose constants b, c such
that b · (1 + a)Yn + c is an unbiased estimator for the number of items (i.e., E[b · (1 + a)Yn + c] = n).

Part (c) (OPTIONAL)

Now suppose you are restricted to use a single Morris counter, but can choose a as above. Find
the variance of the estimator, and using Chebyshev, find the required a to ensure that the estimate
is within n ± εn with probability at least 1 − δ. What is the expected storage required by this
counter?

Problem 4: (Dyadic Partitions and the Count-Min Sketch)

In this problem, we modify the Count-Min sketch to give estimates for range queries and heavy-
hitters. For this, we first need an additional definition. For convenience, assume n = 2k; the dyadic
partitions of the set [n] are defined as follows:

I0 = {{1}, {2}, . . . , {n}}
I1 = {{1, 2}, {3, 4}, . . . , {n− 1, n}}
I2 = {{1, 2, 3, 4}, {5, 6, 7, 8}, . . . , {n− 3, n− 2, n− 1, n}}

...

Ik = {{1, 2, . . . , n}}
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Part (a)

Let I = I0∪I1∪ . . .∪Ik be the set of all dyadic intervals. Show that |I| ≤ 2n. Moreover, show that
any interval [a, b] = {a, a+ 1, . . . , b} can be written as a disjoint union of at most 2 log2 n sets from
I. (For example, for n = 16 = 24, the set [6, 15] can be written as {6} ∪ {7, 8} ∪ {9, 10, 11, 12} ∪
{13, 14} ∪ {15}, which is less than 2× 4 = 8 sets.)

Part (b)

In class, given a stream of m elements, we saw how to construct a Count-Min sketch for the
frequencies of items i ∈ [n], and how to use it for point queries (i.e., to estimate fi for some i ∈ [n]).
We now extend this to range queries – estimating F[a,b] =

∑b
i=a fi for given a, b.

Note first that the basic Count-Min sketch can be interpreted as constructing a sketch for
frequencies of set-membership for the sets in I0. We have also seen how to make hash functions
for general set-membership (for example, the Bloom filter!) – we can thus extend the Count-Min
sketch to include an estimate for the frequencies of all the dyadic intervals. Using this new sketch,
show that for a given range query [a, b] , we can use a Count-Min sketch with R = log(1/δ) rows
and B = 2/ε columns to get an estimate F[a,b] satisfying:

P

F[a,b] <
∑
i∈[a,b]

fi + 2mε log n

 ≥ 1− δ

Part (c)

The φ-heavy-hitters (or φ-HH) query is defined as follows:
Given stream {x1, x2, . . . , xm} with xi ∈ [n], and some constant φ ∈ [0, 1], we want to output a
subset L ⊂ [n] such that, with probability at least 1 − δ, L contains all i ∈ [n] such that fi ≥ φm,
and moreover, every i ∈ L satisfies fi ≥ φm/2.

We now adapt the above sketch for the φ-HH problem. First, using the union bound, argue that
if we choose δ = γ/n, then we have that for all dyadic intervals I ∈ I, we have that the frequency
estimate FI obeys: P

[
FI <

∑
i∈I fi +mε

]
≥ 1 − δ. Thus, argue that if we use ε < φ/2, then the

set of all i ∈ [n] such that F{i} > φm is a solution to the φ-HH problem.

Part (d)

Note though that the brute force way to find all i ∈ [n] such that F{i} > φm requires n point
queries. Briefly argue how you can use the frequency estimates FI for the dyadic intervals to find
the same using O(log n/φ) queries.
Hint: Consider a binary tree defined by the dyadic intervals, with the root as Ilogn = {[n]}, and the
leaves as I0 = {{1}, {2}, . . . , {n}}. Argue that for every heavy-hitter node i, every parent node in
the tree has FI > φm. Also, at any level j, how many sets I ∈ Ij can have FI > φm?
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