Problem 1: (Chernoff Bounds via Negative Dependence - from MU Ex 5.15)

While deriving lower bounds on the load of the maximum loaded bin when n balls are thrown in n bins, we saw the use of negative dependence. We now consider another example, where this technique can be used to derive Chernoff-style bounds for the number of empty bins.

Suppose n balls are thrown in n bins, and let $\left\{X_{i}\right\}_{i \in[n]}$ be a collection of indicator r.v.s indicating whether bin i is empty (i.e., $X_{i}=1$ iff bin i has 0 balls). On the other hand, let $\left\{Y_{i}\right\}_{i \in[n]}$ be a set of i.i.d. Bernoulli r.v.s which are 1 with probability $(1-1 / n)^{n}$.

Part (a)

For any $k \geq 1$, show that $\mathbb{E}\left[X_{1} X_{2} \ldots X_{k}\right] \leq \mathbb{E}\left[Y_{1} Y_{2} \ldots Y_{k}\right]$.
Solution: $\quad X_{1} X_{2} \ldots X_{k}=1$ if and only if the first k bins are empty. Note that there are $(n-k)^{n}$ ways to throw n balls into $n-k$ bins, and there are n^{n} ways to throw n balls into n bins. Therefore, we have:

$$
\mathbb{E}\left[X_{1} X_{2} \ldots X_{k}\right]=\frac{(n-k)^{n}}{n^{n}}=\left(1-\frac{k}{n}\right)^{n}
$$

Since $\left\{Y_{i}\right\}_{i \in[n]}$ are i.i.d. Bernoulli r.v.s which are 1 with probability $(1-1 / n)^{n}$, we have:

$$
\mathbb{E}\left[Y_{1} Y_{2} \ldots Y_{k}\right]=\left(1-\frac{1}{n}\right)^{k n}
$$

Now for any positive integers k, n, we have that $1-\frac{k}{n} \leq\left(1-\frac{1}{n}\right)^{k}$
Hence, $\mathbb{E}\left[X_{1} X_{2} \ldots X_{k}\right] \leq \mathbb{E}\left[Y_{1} Y_{2} \ldots Y_{k}\right]$.

Part (b)

Let $X=\sum_{i=1}^{n} X_{i}$ and $Y=\sum_{i=1}^{n} Y_{i}$. Using the above result, prove that for any $\theta \geq 0$, we have:

$$
\mathbb{E}\left[e^{\theta X}\right] \leq \mathbb{E}\left[e^{\theta Y}\right]
$$

Hint: Think of the Taylor series of the exponential function.
Solution: Using the Taylor series of the exponential function and linearity of expectation, we can write:

$$
\begin{aligned}
& \mathbb{E}\left[e^{\theta X}\right]=\sum_{i=0}^{\infty} \frac{t^{i}}{i!} \mathbb{E}\left[X^{i}\right] \\
& \mathbb{E}\left[e^{\theta Y}\right]=\sum_{i=0}^{\infty} \frac{t^{i}}{i!} \mathbb{E}\left[Y^{i}\right]
\end{aligned}
$$

Now, let's show that for each $i, \mathbb{E}\left[X^{i}\right] \leq \mathbb{E}\left[Y^{i}\right]$.
Let $Z=\sum_{i=1}^{n} Z_{i}$ be an indicator random variable which is the sum of i.i.d. indicators Z_{i}. Then,

$$
\mathbb{E}\left[Z^{j}\right]=\mathbb{E}\left[\left(\sum_{i=1}^{n} Z_{i}\right)^{j}\right]
$$

After expanding out the j th power, we get a sum of terms where each term is a product of various Z_{i} 's to powers c_{i}, i.e. $Z_{1}^{c_{1}} Z_{2}^{c_{2}} \cdots Z_{n}^{c_{n}}$. Since the Z_{i} 's are indicators, each term simplifies to:

$$
Z_{1}^{c_{1}} Z_{2}^{c_{2}} \cdots Z_{n}^{c_{n}}=\prod_{i=1}^{n} Z_{i}^{I\left\{c_{i} \neq 0\right\}}=\prod_{i=1}^{k} Z_{i}
$$

where $I\left\{c_{i} \neq 0\right\}$ indicates that $c_{i}>0$, and $k=\sum_{i=1}^{n} I\left\{c_{i} \neq 0\right\}$.
Noting that both X and Y satisfy the properties of Z, and using the result from part a), we can write:

$$
\mathbb{E}\left[X^{j}\right]=\mathbb{E}\left[\left(\sum_{i=1}^{n} X_{i}\right)^{j}\right]=\sum_{c=\left(c_{1}, \cdots, c_{n}\right)} \mathbb{E}\left[\prod_{i=1}^{k} X_{i}^{c_{i}}\right]=\sum \mathbb{E}\left[\prod_{i=1}^{k} X_{i}\right] \leq \sum \mathbb{E}\left[\prod_{i=1}^{k} Y_{i}\right]=\mathbb{E}\left[Y^{j}\right]
$$

Which means that we have shown that $\mathbb{E}\left[e^{\theta X}\right] \leq \mathbb{E}\left[e^{\theta Y}\right]$.

Part (c)

Finally, using this result, state a Chernoff bound for $\mathbb{P}[X \geq(1+\epsilon) \mathbb{E}[X]]$. (You can use bounds you know from before without re-deriving them).

Solution: Note that $\mathbb{E}[X]=\sum \mathbb{E}\left[X_{i}\right]=\sum(1-1 / n)^{n}=\mathbb{E}[Y]$. Now using Markov inequality and part b), we can write:

$$
\mathbb{P}[X \geq x] \leq \frac{\mathbb{E}\left[e^{t X}\right]}{e^{t x}} \leq \frac{\mathbb{E}\left[e^{t Y}\right]}{e^{t x}}
$$

If we take $x=(1+\epsilon) \mathbb{E}[X]$, and use the fact that $\mathbb{E}\left[e^{t Y}\right] \leq e^{\mathbb{E}[Y]\left(e^{t}-1\right)}$, we will get:

$$
\mathbb{P}[X \geq(1+\epsilon) \mathbb{E}[X]] \leq \frac{e^{\mathbb{E}[Y]\left(e^{t}-1\right)}}{e^{t(1+\epsilon) \mathbb{E}[X]}}
$$

Therefore,

$$
\mathbb{P}[X \geq(1+\epsilon) \mathbb{E}[X]] \leq\left(\frac{e^{\left(e^{t}-1\right)}}{e^{t(1+\epsilon)}}\right)^{\mathbb{E}[Y]}
$$

Setting $t=\ln (1+\epsilon)$, we get:

$$
\mathbb{P}[X \geq(1+\epsilon) \mathbb{E}[X]] \leq\left(\frac{e^{\epsilon}}{(1+\epsilon)^{(1+\epsilon)}}\right)^{\mathbb{E}[Y]}
$$

Problem 2: (Bucket Sort)

Suppose we are given $n=2^{m}$ elements, each of which are k-bit sequences drawn uniformly at random from $U=\{0,1\}^{k}$ (where $k \geq m$). We'll now consider a simple deterministic algorithm for sorting these, that takes $O(n)$ time on average. First, we place place each element in one of 2^{m} buckets, where the $j^{\text {th }}$ bucket $\left(j \in\left\{0,1, \ldots, 2^{m}-1\right)\right.$ is used to place all elements whose first m bits correspond to the number j. Next, we use any sorting algorithm with quadratic running time (for example, a simple bubble sort or insertion sort) to sort the elements in each bucket, and then merge the buckets. Prove that the expected running time of this algorithm is $O(n)$.
Hint: Recall the analysis of the FKS hashing scheme.

Solution: Let X_{b} be the number of elements that land in the $b^{t h}$ bucket. As we are using a sorting algorithm with quadratic running time, the time to sort the $b^{t h}$ bucket is then at most $c X_{b}^{2}$ for some constant c. The expected time spent sorting in the second stage is at most

$$
\mathbb{E}\left[\sum_{b=1}^{2^{m}} c X_{b}^{2}\right]=c \sum_{b=1}^{2^{m}} \mathbb{E}\left[X_{b}^{2}\right]
$$

On the other hand, for pairs of items i, j, let $Y_{i j}$ be the indicator that they 'collide', i.e., fall in the same bucket (because they have the same first m bits). By the principle of deferred decisions, we have that $\mathbb{E}\left[Y_{i j}\right]=1 / 2^{m}=1 / n$, and also that there are $\binom{n}{2}=\frac{n^{2}-n}{2}$ such pairs - thus $\mathbb{E}\left[\sum_{i, j} Y_{i j}\right]=$ $\frac{n-1}{2}$. On the other hand, we also have that $\sum_{i, j} Y_{i j}=\sum_{b=1}^{2^{m}}\binom{X_{b}}{2}\left(\right.$ since $\left.n=2^{m}\right)$. Further, since $\sum_{b} X_{b}=n$, we can simplify to get $\sum_{i, j} Y_{i j}=\frac{\sum_{b=1}^{n} X_{b}^{2}-n}{2}$. Taking expectation, we get:

$$
\sum_{b=1}^{n} X_{b}^{2}=2 n-1
$$

Thus the expected running-time is $\mathbb{E}\left[\sum_{b=1}^{2^{m}} c X_{b}^{2}\right] \leq 2 c n=O(n)$.

Problem 3: (Open Addressing)

In class, we saw the chaining technique for designing hash tables for answering exact set-membership (i.e., without allowing for false-positives). Another common approach is that of open-addressing, where given a set S of m items, we hash the elements in a single array of length $>m$. Each entry in the array either contains an element from S, or is empty. The hash function defines for each element $x \in U$, a probe sequence $\{h(x, 1), h(x, 2), \ldots\}$. To insert an element x in the array, we first check position $h(x, 1)$ - if this is occupied, we try to insert it in $h(x, 2)$, and so on till we find an open cell in the array.

Part (a)

Suppose we use an array of length $2 m$ to store m items, and suppose each hash-function $h(x, i)$ is independent and uniform over $\{0,1, \ldots, 2 m-1\}$. Show that for any of the first m elements to be
inserted, the insertion required more than k probes with probability $\leq 2^{-k}$ - hence show that the probability that the $i^{t h}$ insertion (for $i \leq m$) took more than $2 \log _{2} m$ probes is less than $1 / m^{2}$.

Solution: Note that even after the first m elements have been hashed, the number of unoccupied spots is m. Thus, for any of the first m elements, the probability that each hash function maps to an empty position is at least $1 / 2$ - moreover, since each probe is independent, the probability that the $i^{t h}$ insertion needs more than k probes is at most 2^{-k}. Now if we set $k=2 \log _{2} m$ in this bound, then we get that for any of the first m elements, the probability that it needs more than $2 \log _{2} m$ probes is less than $1 / m^{2}$.

Part (b)

Next, let X be the maximum number of probes required by an item during insertion of the first m items. Show that X is less than $2 \log _{2} m$ with probability at least $1-1 / m$. Using this, also show that the $\mathbb{E}[X]$ is $O(\log m)$.

Solution: For any element $i \in\{1,2, \ldots, m\}$, from above, we know that the probability it needs more than $2 \log _{2} m$ probes is less than $1 / m^{2}$. By the union bound, we have that:

$$
\begin{aligned}
\mathbb{P}\left[X>2 \log _{2} m\right] & =\mathbb{P}\left[\cup_{i=1}^{m}\left\{\text { Number of probes needed by } i^{t h} \text { element }>2 \log _{2} m\right\}\right] \\
& \leq m \mathbb{P}\left[\text { Number of probes needed by } i^{\text {th }} \text { element }>2 \log _{2} m\right] \leq \frac{1}{m}
\end{aligned}
$$

Next, note that in the worst case, the number of probes required is m. Now, for $\mathbb{E}[X]$, we have:

$$
\begin{aligned}
\mathbb{E}[X] & \leq\left(2 \log _{2} m\right) \mathbb{P}\left[X \leq 2 \log _{2} m\right]+m \mathbb{P}\left[X>2 \log _{2} m\right] \\
& \leq\left(2 \log _{2} m\right) \times 1+m \times \frac{1}{m}=O(\log m)
\end{aligned}
$$

Problem 4: (Extensions of Bloom Filters)

In class we saw the basic Bloom filter, where we used k independent random hash-functions $\left\{h_{1}, h_{2}, \ldots, h_{k}\right\}$ to hash a set S of m elements into an array A of n bits. Recall that in order to get a false-positive rate of $\delta=O(1)$, we chose $n=c m$, for some constant c, and $k c \ln 2$ (in particular, for false-positive rate of 2%, we used $c=8$ and $k=6$). We now see how this basic structure can be modified in various ways.

Part (a)

In order to support item deletions in addition to insertions and look-ups, we can replace each bit $A[i]$ in A with a counter - when an element is hashed to bucket i, we increment $A[i]$, and to delete an element x, we decrement the counter for each $A[i]$ corresponding to $\left\{h_{1}(x), h_{2}(x), \ldots, h_{k}(x)\right\}$. As before, if we use $n=O(m)$ and fixed-size counters of b-bits. What is the probability that counter $A[i]$ overflows after inserting m elements? Also argue that $O(\log \log m)$-bit counters are necessary and sufficient to prevent overflow in any counter (with high probability).

ORIE 4520: Stochastics at Scale
Fall 2015

Homework 4: Solutions
Sid Banerjee (sbanerjee@cornell.edu)

Solution: Note that a bit counter can count up to 2^{b} elements. For counter $A[i]$ overflow, we need at least $2^{b}+1$ elements to be hashed to bucket i - this happens with probability $\sum_{k=2^{b}+1}^{m}\binom{m}{k} \frac{1}{(c m)^{k}}\left(1-\frac{1}{c m}\right)^{m-k}$ For $m \gg 2^{b}$, we can use $\binom{m}{k} \approx m^{k} / k$! to get that the probability of overflow $\approx \frac{1}{c^{2^{b}}\left(2^{b}\right)!}$.

Moreover, from class you know that if m balls are dropped uniformly at random into $\theta(m)$ bins, then with high probability, the maximum loaded bin has $\Theta\left(\frac{\log m}{\log \log m}\right)$ balls. Thus the bucket with the maximum number of hashed items has $\Theta\left(\frac{\log m}{\log \log m}\right)$ items, and hence needs a counter of size $\Theta\left(\log \left(\frac{\log m}{\log \log m}\right)\right)=\Theta(\log \log m)$ bits.

Part (b)

Suppose we use the same hash functions $\left\{h_{1}, h_{2}, \ldots, h_{k}\right\}$ to hash two separate sets S_{1} and S_{2} (both of size m) - let the resulting Bloom filters (each of n bits) be A_{1} and A_{2} respectively. Suppose we create a new Bloom filter $A_{O R}$ by taking the bit-wise OR of the bits of A_{1} and A_{2}. Is this the same as the Bloom filter constructed by adding the elements of $S_{1} \cup S_{1}$ one at a time?

Solution: Recall that in a Bloom filter, every cell is set to 1 if any of the elements are hashed to it - this can be thought of representing each element x in terms of a fingerprint, which has 1 s in all the k positions where x is hashed, and then taking the OR of all the fingerprints. Thus, taking the bitwise OR of two Bloom filters obtained from S_{1} and S_{2} does give the same Bloom filter as that created by adding each element of $S_{1} \cup S_{2}$.

Part (c)

Suppose we create another new Bloom filter $A_{A N D}$ by taking the bit-wise AND of the bits of A_{1} and A_{2}. Argue that this is not the same as the Bloom filter constructed by adding the elements of $S_{1} \cap S_{2}$ one at a time. However, also argue that $A_{A N D}$ can be used to check if $x \in S_{1} \cap S_{2}$ with one-sided error (i.e., give an algorithm that always returns TRUE if $x \in S_{1} \cap S_{2}$), and explain how we can get false-positives.

Solution: First, note that since we use the same hash functions $\left\{h_{1}, h_{2}, \ldots, h_{k}\right\}$, hence for any $x \in S_{1} \cap S_{2}$, the positions corresponding to $h_{1}(x), h_{2}(x), \ldots, h_{k}(x)$ are set to 1 in both A_{1} and A_{2}, and thus in the bitwise-AND of A_{1} and A_{2}. However, additional positions in $A_{A N D}$ may also be falsely set to 1 - in particular, a position b, where $b \neq h_{i}(x)$ for any $x \in S_{1} \cap S_{2}$ and $i \in[k]$, can be set to 1 if there exists elements $y \in S_{1} \backslash S_{2}, z \in S_{2} \backslash S_{1}$ such that $h_{i}(y)=h_{j}(z)$ for some $i, j \in[k]$. Note that there are $\left|S_{1} \backslash S_{2}\right| \times\left|S_{2} \backslash S_{1}\right|$ pairs of such false collisions, and each one may collide with probability $1 / n$.

Problem 5: (Similarity functions with no linear-LSH family)

In class we discussed locality sensitive hashing for the Hamming and Jaccard similarity functions Recall that for a ground set \mathcal{U} and subsets $A, B \subseteq \mathcal{U}$, these two distances corresponded to:

$$
s_{\text {Hamming }}(A, B)=1-\frac{A \Delta B}{|\mathcal{U}|} \quad, \quad s_{\text {Jaccard }}(A, B)=\frac{|A \cap B|}{|A \cup B|},
$$

where $A \Delta B$ is the symmetric difference between sets A and B (i.e., $A \Delta B=(A \cup B) \backslash(A \cap B))$ Moreover, in both cases, we obtained families of hash-functions H satisfying:

$$
\mathbb{P}[h(x)=h(y)]=s(x, y)
$$

A natural question to ask is if such linear-LSH families exists for other similarity functions, in particular, for two other natural subset-similarity measures - the Overlap and Dice similarities:

$$
s_{\text {Overlap }}(A, B)=\frac{|A \cap B|}{\min \{|A|,|B|\}} \quad, \quad d_{\text {dice }}(A, B)=\frac{2|A \cap B|}{|A|+|B|}
$$

Part (a)

As in class, suppose we define a distance function $d: \mathcal{U} \times \mathcal{U} \rightarrow[0,1]$ corresponding to a similarity function as $d(x, y)=1-s(x, y)$. Show that for a given similarity function s, if we have a linear-LSH family H, i.e., whose hash functions satisfy $\mathbb{P}[h(x)=h(y)]=s(x, y)$, then the distance functions must obey the triangle inequality, i.e., for any $x, y, z \in \mathcal{U}$, we must have:

$$
d(x, y)+d(y, z) \geq d(x, z)
$$

Solution: Consider x, y, z distinct elements in \mathcal{U}. Note that we have $\mathbb{P}[h(x) \neq h(y)]=d(x, y)$, and similarly for x, z and y, z. Now we have:

$$
\begin{aligned}
\mathbb{P}[h(x) \neq h(y)] & =\mathbb{P}[h(x) \neq h(y), h(x)=h(z)]+\mathbb{P}[h(x) \neq h(y), h(x) \neq h(z)] \\
& \leq \mathbb{P}[h(y) \neq h(z)]+\mathbb{P}[h(x) \neq h(z)] \\
& =d(y, z)+d(x, z)
\end{aligned}
$$

Part (b)
Using the above result, prove that the Overlap and Dice similarity functions can not have a linearLSH family.

Solution: We just need to show via examples that the Overlap and Dice similarities do not obey the triangle inequality. For example, consider the ground set $\mathcal{U}=\{1,2, \ldots, 8\}$, and the sets $A=\{1,2,3,4,5\}, B=\{1,2,6,7,8\}, C=\{1,2,3,4,6,8\}$. Now we have $s_{\text {Overlap }}(A, B)=$ $2 / 5, s_{\text {Overlap }}(B, C)=s_{\text {Overlap }}(A, C)=4 / 5$, and hence $d_{\text {Overlap }}(A, B)=3 / 5>1 / 5+1 / 5=$ $d_{\text {Overlap }}(B, C)=d_{\text {Overlap }}(A, C)$. Similarly, we have $s_{\text {Dice }}(A, B)=2 / 5, s_{\text {Dice }}(B, C)=s_{\text {Dice }}(A, C)=$ $8 / 11$, and hence $d_{\text {Dice }}(A, B)=3 / 5>3 / 11+3 / 11=d_{\text {Dice }}(B, C)=d_{\text {Dice }}(A, C)$

