
ORIE 4520: Stochastics at Scale
Fall 2015

Homework 4: Solutions
Sid Banerjee (sbanerjee@cornell.edu)

Problem 1: (Chernoff Bounds via Negative Dependence - from MU Ex 5.15)

While deriving lower bounds on the load of the maximum loaded bin when n balls are thrown
in n bins, we saw the use of negative dependence. We now consider another example, where this
technique can be used to derive Chernoff-style bounds for the number of empty bins.

Suppose n balls are thrown in n bins, and let {Xi}i∈[n] be a collection of indicator r.v.s indicating
whether bin i is empty (i.e., Xi = 1 iff bin i has 0 balls). On the other hand, let {Yi}i∈[n] be a set
of i.i.d. Bernoulli r.v.s which are 1 with probability (1− 1/n)n.

Part (a)

For any k ≥ 1, show that E[X1X2 . . . Xk] ≤ E[Y1Y2 . . . Yk].

Solution: X1X2 . . . Xk = 1 if and only if the first k bins are empty. Note that there are (n− k)n

ways to throw n balls into n−k bins, and there are nn ways to throw n balls into n bins. Therefore,
we have:

E[X1X2 . . . Xk] =
(n− k)n

nn
=

(
1− k

n

)n
.

Since {Yi}i∈[n] are i.i.d. Bernoulli r.v.s which are 1 with probability (1− 1/n)n, we have:

E[Y1Y2 . . . Yk] =

(
1− 1

n

)kn
.

Now for any positive integers k, n, we have that 1− k
n ≤

(
1− 1

n

)k
Hence, E[X1X2 . . . Xk] ≤ E[Y1Y2 . . . Yk].

Part (b)

Let X =
∑n

i=1Xi and Y =
∑n

i=1 Yi. Using the above result, prove that for any θ ≥ 0, we have:

E[eθX] ≤ E[eθY]

Hint: Think of the Taylor series of the exponential function.

Solution: Using the Taylor series of the exponential function and linearity of expectation, we can
write:

E[eθX] =
∞∑
i=0

ti

i!
E[Xi]

E[eθY] =
∞∑
i=0

ti

i!
E[Y i]

1

mailto:sbanerjee@cornell.edu

ORIE 4520: Stochastics at Scale
Fall 2015

Homework 4: Solutions
Sid Banerjee (sbanerjee@cornell.edu)

Now, let’s show that for each i, E[Xi] ≤ E[Y i].
Let Z =

∑n
i=1 Zi be an indicator random variable which is the sum of i.i.d. indicators Zi. Then,

E[Zj] = E

(n∑
i=1

Zi

)j .
After expanding out the jth power, we get a sum of terms where each term is a product of various
Zi’s to powers ci, i.e. Zc11 Z

c2
2 · · ·Zcnn . Since the Zi’s are indicators, each term simplifies to:

Zc11 Z
c2
2 · · ·Z

cn
n =

n∏
i=1

Z
I{ci 6=0}
i =

k∏
i=1

Zi,

where I{ci 6= 0} indicates that ci > 0, and k =
∑n

i=1 I{ci 6= 0}.
Noting that both X and Y satisfy the properties of Z, and using the result from part a), we can
write:

E[Xj] = E

(n∑
i=1

Xi

)j =
∑

c=(c1,··· ,cn)

E

[
k∏
i=1

Xci
i

]
=
∑

E

[
k∏
i=1

Xi

]
≤
∑

E

[
k∏
i=1

Yi

]
= E[Y j]

Which means that we have shown that E[eθX] ≤ E[eθY].

Part (c)

Finally, using this result, state a Chernoff bound for P[X ≥ (1 + ε)E[X]].
(You can use bounds you know from before without re-deriving them).

Solution: Note that E[X] =
∑

E[Xi] =
∑

(1− 1/n)n = E[Y]. Now using Markov inequality and
part b), we can write:

P[X ≥ x] ≤ E[etX]

etx
≤ E[etY]

etx
.

If we take x = (1 + ε)E[X], and use the fact that E[etY] ≤ eE[Y](et−1), we will get:

P[X ≥ (1 + ε)E[X]] ≤ eE[Y](et−1)

et(1+ε)E[X]
.

Therefore,

P[X ≥ (1 + ε)E[X]] ≤

(
e(e

t−1)

et(1+ε)

)E[Y]

.

Setting t = ln(1 + ε), we get:

P[X ≥ (1 + ε)E[X]] ≤
(

eε

(1 + ε)(1+ε)

)E[Y]

.

2

mailto:sbanerjee@cornell.edu

ORIE 4520: Stochastics at Scale
Fall 2015

Homework 4: Solutions
Sid Banerjee (sbanerjee@cornell.edu)

Problem 2: (Bucket Sort)

Suppose we are given n = 2m elements, each of which are k-bit sequences drawn uniformly at
random from U = {0, 1}k (where k ≥ m). We’ll now consider a simple deterministic algorithm for
sorting these, that takes O(n) time on average. First, we place place each element in one of 2m

buckets, where the jth bucket (j ∈ {0, 1, . . . , 2m − 1) is used to place all elements whose first m
bits correspond to the number j. Next, we use any sorting algorithm with quadratic running time
(for example, a simple bubble sort or insertion sort) to sort the elements in each bucket, and then
merge the buckets. Prove that the expected running time of this algorithm is O(n).
Hint: Recall the analysis of the FKS hashing scheme.

Solution: Let Xb be the number of elements that land in the bth bucket. As we are using a
sorting algorithm with quadratic running time, the time to sort the bth bucket is then at most cX2

b

for some constant c. The expected time spent sorting in the second stage is at most

E

[
2m∑
b=1

cX2
b

]
= c

2m∑
b=1

E[X2
b].

On the other hand, for pairs of items i, j, let Yij be the indicator that they ‘collide’, i.e., fall in the
same bucket (because they have the same first m bits). By the principle of deferred decisions, we

have that E[Yij] = 1/2m = 1/n, and also that there are
(
n
2

)
= n2−n

2 such pairs – thus E[
∑

i,j Yij] =
n−1
2 . On the other hand, we also have that

∑
i,j Yij =

∑2m

b=1

(
Xb
2

)
(since n = 2m). Further, since∑

bXb = n, we can simplify to get
∑

i,j Yij =
∑n

b=1X
2
b−n

2 . Taking expectation, we get:

n∑
b=1

X2
b = 2n− 1

Thus the expected running-time is E
[∑2m

b=1 cX
2
b

]
≤ 2cn = O(n).

Problem 3: (Open Addressing)

In class, we saw the chaining technique for designing hash tables for answering exact set-membership
(i.e., without allowing for false-positives). Another common approach is that of open-addressing,
where given a set S of m items, we hash the elements in a single array of length > m. Each entry
in the array either contains an element from S, or is empty. The hash function defines for each
element x ∈ U , a probe sequence {h(x, 1), h(x, 2), . . .}. To insert an element x in the array, we first
check position h(x, 1) – if this is occupied, we try to insert it in h(x, 2), and so on till we find an
open cell in the array.

Part (a)

Suppose we use an array of length 2m to store m items, and suppose each hash-function h(x, i) is
independent and uniform over {0, 1, . . . , 2m− 1}. Show that for any of the first m elements to be

3

mailto:sbanerjee@cornell.edu

ORIE 4520: Stochastics at Scale
Fall 2015

Homework 4: Solutions
Sid Banerjee (sbanerjee@cornell.edu)

inserted, the insertion required more than k probes with probability ≤ 2−k – hence show that the
probability that the ith insertion (for i ≤ m) took more than 2 log2m probes is less than 1/m2.

Solution: Note that even after the first m elements have been hashed, the number of unoccupied
spots is m. Thus, for any of the first m elements, the probability that each hash function maps
to an empty position is at least 1/2 – moreover, since each probe is independent, the probability
that the ith insertion needs more than k probes is at most 2−k. Now if we set k = 2 log2m in this
bound, then we get that for any of the first m elements, the probability that it needs more than
2 log2m probes is less than 1/m2.

Part (b)

Next, let X be the maximum number of probes required by an item during insertion of the first m
items. Show that X is less than 2 log2m with probability at least 1 − 1/m. Using this, also show
that the E[X] is O(logm).

Solution: For any element i ∈ {1, 2, . . . ,m}, from above, we know that the probability it needs
more than 2 log2m probes is less than 1/m2. By the union bound, we have that:

P[X > 2 log2m] = P[∪mi=1{Number of probes needed by ith element > 2 log2m}]

≤ mP[Number of probes needed by ith element > 2 log2m] ≤ 1

m

Next, note that in the worst case, the number of probes required is m. Now, for E[X], we have:

E[X] ≤ (2 log2m)P[X ≤ 2 log2m] +mP[X > 2 log2m]

≤ (2 log2m)× 1 +m× 1

m
= O(logm)

Problem 4: (Extensions of Bloom Filters)

In class we saw the basic Bloom filter, where we used k independent random hash-functions
{h1, h2, . . . , hk} to hash a set S of m elements into an array A of n bits. Recall that in order
to get a false-positive rate of δ = O(1), we chose n = cm, for some constant c , and k c ln 2 (in
particular, for false-positive rate of 2%, we used c = 8 and k = 6). We now see how this basic
structure can be modified in various ways.

Part (a)

In order to support item deletions in addition to insertions and look-ups, we can replace each bit
A[i] in A with a counter – when an element is hashed to bucket i, we increment A[i], and to delete
an element x, we decrement the counter for each A[i] corresponding to {h1(x), h2(x), . . . , hk(x)}.
As before, if we use n = O(m) and fixed-size counters of b-bits. What is the probability that
counter A[i] overflows after inserting m elements? Also argue that O(log logm)-bit counters are
necessary and sufficient to prevent overflow in any counter (with high probability).

4

mailto:sbanerjee@cornell.edu

ORIE 4520: Stochastics at Scale
Fall 2015

Homework 4: Solutions
Sid Banerjee (sbanerjee@cornell.edu)

Solution: Note that a b bit counter can count up to 2b elements. For counter A[i] overflow, we

need at least 2b+1 elements to be hashed to bucket i – this happens with probability
∑m

k=2b+1

(
m
k

)
1

(cm)k

(
1− 1

cm

)m−k
.

For m >> 2b, we can use
(
m
k

)
≈ mk/k! to get that the probability of overflow ≈ 1

c2b (2b)!
.

Moreover, from class you know that if m balls are dropped uniformly at random into θ(m) bins,

then with high probability, the maximum loaded bin has Θ
(

logm
log logm

)
balls. Thus the bucket with

the maximum number of hashed items has Θ
(

logm
log logm

)
items, and hence needs a counter of size

Θ
(

log
(

logm
log logm

))
= Θ (log logm) bits.

Part (b)

Suppose we use the same hash functions {h1, h2, . . . , hk} to hash two separate sets S1 and S2 (both
of size m) – let the resulting Bloom filters (each of n bits) be A1 and A2 respectively. Suppose we
create a new Bloom filter AOR by taking the bit-wise OR of the bits of A1 and A2. Is this the same
as the Bloom filter constructed by adding the elements of S1 ∪ S1 one at a time?

Solution: Recall that in a Bloom filter, every cell is set to 1 if any of the elements are hashed to
it – this can be thought of representing each element x in terms of a fingerprint, which has 1s in
all the k positions where x is hashed, and then taking the OR of all the fingerprints. Thus, taking
the bitwise OR of two Bloom filters obtained from S1 and S2 does give the same Bloom filter as
that created by adding each element of S1 ∪ S2.

Part (c)

Suppose we create another new Bloom filter AAND by taking the bit-wise AND of the bits of A1

and A2. Argue that this is not the same as the Bloom filter constructed by adding the elements of
S1 ∩ S2 one at a time. However, also argue that AAND can be used to check if x ∈ S1 ∩ S2 with
one-sided error (i.e., give an algorithm that always returns TRUE if x ∈ S1 ∩ S2), and explain how
we can get false-positives.

Solution: First, note that since we use the same hash functions {h1, h2, . . . , hk}, hence for any
x ∈ S1 ∩ S2, the positions corresponding to h1(x), h2(x), . . . , hk(x) are set to 1 in both A1 and A2,
and thus in the bitwise-AND of A1 and A2. However, additional positions in AAND may also be
falsely set to 1 – in particular, a position b, where b 6= hi(x) for any x ∈ S1 ∩S2 and i ∈ [k], can be
set to 1 if there exists elements y ∈ S1 \ S2, z ∈ S2 \ S1 such that hi(y) = hj(z) for some i, j ∈ [k].
Note that there are |S1 \S2| × |S2 \S1| pairs of such false collisions, and each one may collide with
probability 1/n.

5

mailto:sbanerjee@cornell.edu

ORIE 4520: Stochastics at Scale
Fall 2015

Homework 4: Solutions
Sid Banerjee (sbanerjee@cornell.edu)

Problem 5: (Similarity functions with no linear-LSH family)

In class we discussed locality sensitive hashing for the Hamming and Jaccard similarity functions
Recall that for a ground set U and subsets A,B ⊆ U , these two distances corresponded to:

sHamming(A,B) = 1− A∆B

|U|
, sJaccard(A,B) =

|A ∩B|
|A ∪B|

,

where A∆B is the symmetric difference between sets A and B (i.e., A∆B = (A ∪ B) \ (A ∩ B))
Moreover, in both cases, we obtained families of hash-functions H satisfying:

P[h(x) = h(y)] = s(x, y)

A natural question to ask is if such linear-LSH families exists for other similarity functions, in
particular, for two other natural subset-similarity measures – the Overlap and Dice similarities:

sOverlap(A,B) =
|A ∩B|

min{|A|, |B|}
, ddice(A,B) =

2|A ∩B|
|A|+ |B|

Part (a)

As in class, suppose we define a distance function d : U × U → [0, 1] corresponding to a similarity
function as d(x, y) = 1−s(x, y). Show that for a given similarity function s, if we have a linear-LSH
family H, i.e., whose hash functions satisfy P[h(x) = h(y)] = s(x, y), then the distance functions
must obey the triangle inequality, i.e., for any x, y, z ∈ U , we must have:

d(x, y) + d(y, z) ≥ d(x, z)

Solution: Consider x, y, z distinct elements in U . Note that we have P[h(x) 6= h(y)] = d(x, y),
and similarly for x, z and y, z. Now we have:

P[h(x) 6= h(y)] = P[h(x) 6= h(y), h(x) = h(z)] + P[h(x) 6= h(y), h(x) 6= h(z)]

≤ P[h(y) 6= h(z)] + P[h(x) 6= h(z)]

= d(y, z) + d(x, z)

Part (b)

Using the above result, prove that the Overlap and Dice similarity functions can not have a linear-
LSH family.

Solution: We just need to show via examples that the Overlap and Dice similarities do not
obey the triangle inequality. For example, consider the ground set U = {1, 2, . . . , 8}, and the
sets A = {1, 2, 3, 4, 5}, B = {1, 2, 6, 7, 8}, C = {1, 2, 3, 4, 6, 8}. Now we have sOverlap(A,B) =
2/5, sOverlap(B,C) = sOverlap(A,C) = 4/5, and hence dOverlap(A,B) = 3/5 > 1/5 + 1/5 =
dOverlap(B,C) = dOverlap(A,C). Similarly, we have sDice(A,B) = 2/5, sDice(B,C) = sDice(A,C) =
8/11, and hence dDice(A,B) = 3/5 > 3/11 + 3/11 = dDice(B,C) = dDice(A,C)

6

mailto:sbanerjee@cornell.edu

