Problem 1: (Chernoff Bounds via Negative Dependence - from MU Ex 5.15)

While deriving lower bounds on the load of the maximum loaded bin when n balls are thrown in n bins, we saw the use of *negative dependence*. We now consider another example, where this technique can be used to derive Chernoff-style bounds for the number of empty bins.

Suppose *n* balls are thrown in *n* bins, and let $\{X_i\}_{i \in [n]}$ be a collection of indicator r.v.s indicating whether bin *i* is empty (i.e., $X_i = 1$ iff bin *i* has 0 balls). On the other hand, let $\{Y_i\}_{i \in [n]}$ be a set of i.i.d. Bernoulli r.v.s which are 1 with probability $(1 - 1/n)^n$.

Part (a)

For any $k \ge 1$, show that $\mathbb{E}[X_1 X_2 \dots X_k] \le \mathbb{E}[Y_1 Y_2 \dots Y_k]$.

Solution: $X_1X_2...X_k = 1$ if and only if the first k bins are empty. Note that there are $(n-k)^n$ ways to throw n balls into n-k bins, and there are n^n ways to throw n balls into n bins. Therefore, we have:

$$\mathbb{E}[X_1 X_2 \dots X_k] = \frac{(n-k)^n}{n^n} = \left(1 - \frac{k}{n}\right)^n.$$

Since $\{Y_i\}_{i\in[n]}$ are i.i.d. Bernoulli r.v.s which are 1 with probability $(1-1/n)^n$, we have:

$$\mathbb{E}[Y_1Y_2\ldots Y_k] = \left(1 - \frac{1}{n}\right)^{kn}.$$

Now for any positive integers k, n, we have that $1 - \frac{k}{n} \leq \left(1 - \frac{1}{n}\right)^k$

Hence, $\mathbb{E}[X_1 X_2 \dots X_k] \leq \mathbb{E}[Y_1 Y_2 \dots Y_k].$

Part (b)

Let $X = \sum_{i=1}^{n} X_i$ and $Y = \sum_{i=1}^{n} Y_i$. Using the above result, prove that for any $\theta \ge 0$, we have:

$$\mathbb{E}[e^{\theta X}] \le \mathbb{E}[e^{\theta Y}]$$

Hint: Think of the Taylor series of the exponential function.

Solution: Using the Taylor series of the exponential function and linearity of expectation, we can write:

$$\mathbb{E}[e^{\theta X}] = \sum_{i=0}^{\infty} \frac{t^i}{i!} \mathbb{E}[X^i]$$
$$\mathbb{E}[e^{\theta Y}] = \sum_{i=0}^{\infty} \frac{t^i}{i!} \mathbb{E}[Y^i]$$

Now, let's show that for each $i, \mathbb{E}[X^i] \leq \mathbb{E}[Y^i]$. Let $Z = \sum_{i=1}^n Z_i$ be an indicator random variable which is the sum of i.i.d. indicators Z_i . Then,

$$\mathbb{E}[Z^j] = \mathbb{E}\left[\left(\sum_{i=1}^n Z_i\right)^j\right].$$

After expanding out the *j*th power, we get a sum of terms where each term is a product of various Z_i 's to powers c_i , i.e. $Z_1^{c_1} Z_2^{c_2} \cdots Z_n^{c_n}$. Since the Z_i 's are indicators, each term simplifies to:

$$Z_1^{c_1} Z_2^{c_2} \cdots Z_n^{c_n} = \prod_{i=1}^n Z_i^{I\{c_i \neq 0\}} = \prod_{i=1}^k Z_i,$$

where $I\{c_i \neq 0\}$ indicates that $c_i > 0$, and $k = \sum_{i=1}^n I\{c_i \neq 0\}$. Noting that both X and Y satisfy the properties of Z, and using the result from part a), we can write:

$$\mathbb{E}[X^j] = \mathbb{E}\left[\left(\sum_{i=1}^n X_i\right)^j\right] = \sum_{c=(c_1,\cdots,c_n)} \mathbb{E}\left[\prod_{i=1}^k X_i^{c_i}\right] = \sum \mathbb{E}\left[\prod_{i=1}^k X_i\right] \le \sum \mathbb{E}\left[\prod_{i=1}^k Y_i\right] = \mathbb{E}[Y^j]$$

Which means that we have shown that $\mathbb{E}[e^{\theta X}] \leq \mathbb{E}[e^{\theta Y}].$

Part (c)

Finally, using this result, state a Chernoff bound for $\mathbb{P}[X \ge (1 + \epsilon)\mathbb{E}[X]]$. (You can use bounds you know from before without re-deriving them).

Solution: Note that $\mathbb{E}[X] = \sum \mathbb{E}[X_i] = \sum (1 - 1/n)^n = \mathbb{E}[Y]$. Now using Markov inequality and part b), we can write:

$$\mathbb{P}[X \ge x] \le \frac{\mathbb{E}[e^{tX}]}{e^{tx}} \le \frac{\mathbb{E}[e^{tY}]}{e^{tx}}.$$

If we take $x = (1 + \epsilon)\mathbb{E}[X]$, and use the fact that $\mathbb{E}[e^{tY}] \leq e^{\mathbb{E}[Y](e^t - 1)}$, we will get:

$$\mathbb{P}[X \ge (1+\epsilon)\mathbb{E}[X]] \le \frac{e^{\mathbb{E}[Y](e^t-1)}}{e^{t(1+\epsilon)\mathbb{E}[X]}}.$$

Therefore,

$$\mathbb{P}[X \ge (1+\epsilon)\mathbb{E}[X]] \le \left(\frac{e^{(e^t-1)}}{e^{t(1+\epsilon)}}\right)^{\mathbb{E}[Y]}.$$

Setting $t = \ln(1 + \epsilon)$, we get:

$$\mathbb{P}[X \ge (1+\epsilon)\mathbb{E}[X]] \le \left(\frac{e^{\epsilon}}{(1+\epsilon)^{(1+\epsilon)}}\right)^{\mathbb{E}[Y]}.$$

Problem 2: (Bucket Sort)

Suppose we are given $n = 2^m$ elements, each of which are k-bit sequences drawn uniformly at random from $U = \{0, 1\}^k$ (where $k \ge m$). We'll now consider a simple deterministic algorithm for sorting these, that takes O(n) time on average. First, we place place each element in one of 2^m buckets, where the j^{th} bucket ($j \in \{0, 1, \dots, 2^m - 1\}$) is used to place all elements whose first m bits correspond to the number j. Next, we use any sorting algorithm with quadratic running time (for example, a simple bubble sort or insertion sort) to sort the elements in each bucket, and then merge the buckets. Prove that the expected running time of this algorithm is O(n). Hint: Recall the analysis of the FKS hashing scheme.

Solution: Let X_b be the number of elements that land in the b^{th} bucket. As we are using a sorting algorithm with quadratic running time, the time to sort the b^{th} bucket is then at most cX_b^2 for some constant c. The expected time spent sorting in the second stage is at most

$$\mathbb{E}\left[\sum_{b=1}^{2^m} cX_b^2\right] = c\sum_{b=1}^{2^m} \mathbb{E}[X_b^2].$$

On the other hand, for pairs of items i, j, let Y_{ij} be the indicator that they 'collide', i.e., fall in the same bucket (because they have the same first m bits). By the principle of deferred decisions, we have that $\mathbb{E}[Y_{ij}] = 1/2^m = 1/n$, and also that there are $\binom{n}{2} = \frac{n^2 - n}{2}$ such pairs – thus $\mathbb{E}[\sum_{i,j} Y_{ij}] = \frac{n-1}{2}$. On the other hand, we also have that $\sum_{i,j} Y_{ij} = \sum_{b=1}^{2^m} \binom{X_b}{2}$ (since $n = 2^m$). Further, since $\sum_b X_b = n$, we can simplify to get $\sum_{i,j} Y_{ij} = \frac{\sum_{b=1}^n X_b^2 - n}{2}$. Taking expectation, we get:

$$\sum_{b=1}^{n} X_{b}^{2} = 2n - 1$$

Thus the expected running-time is $\mathbb{E}\left[\sum_{b=1}^{2^m} cX_b^2\right] \leq 2cn = O(n).$

Problem 3: (Open Addressing)

In class, we saw the *chaining* technique for designing hash tables for answering exact set-membership (i.e., without allowing for false-positives). Another common approach is that of *open-addressing*, where given a set S of m items, we hash the elements in a single array of length > m. Each entry in the array either contains an element from S, or is empty. The hash function defines for each element $x \in U$, a probe sequence $\{h(x, 1), h(x, 2), \ldots\}$. To insert an element x in the array, we first check position h(x, 1) – if this is occupied, we try to insert it in h(x, 2), and so on till we find an open cell in the array.

Part (a)

Suppose we use an array of length 2m to store m items, and suppose each hash-function h(x, i) is independent and uniform over $\{0, 1, \ldots, 2m - 1\}$. Show that for any of the first m elements to be

inserted, the insertion required more than k probes with probability $\leq 2^{-k}$ – hence show that the probability that the i^{th} insertion (for $i \leq m$) took more than $2\log_2 m$ probes is less than $1/m^2$.

Solution: Note that even after the first m elements have been hashed, the number of unoccupied spots is m. Thus, for any of the first m elements, the probability that each hash function maps to an empty position is at least 1/2 – moreover, since each probe is independent, the probability that the i^{th} insertion needs more than k probes is at most 2^{-k} . Now if we set $k = 2 \log_2 m$ in this bound, then we get that for any of the first m elements, the probability that it needs more than $2 \log_2 m$ probes is less than $1/m^2$.

Part (b)

Next, let X be the maximum number of probes required by an item during insertion of the first m items. Show that X is less than $2\log_2 m$ with probability at least 1 - 1/m. Using this, also show that the $\mathbb{E}[X]$ is $O(\log m)$.

Solution: For any element $i \in \{1, 2, ..., m\}$, from above, we know that the probability it needs more than $2\log_2 m$ probes is less than $1/m^2$. By the union bound, we have that:

$$\mathbb{P}[X > 2\log_2 m] = \mathbb{P}[\bigcup_{i=1}^m \{\text{Number of probes needed by } i^{th} \text{ element} > 2\log_2 m\}]$$

$$\leq m \mathbb{P}[\text{Number of probes needed by } i^{th} \text{ element} > 2\log_2 m] \leq \frac{1}{m}$$

Next, note that in the worst case, the number of probes required is m. Now, for $\mathbb{E}[X]$, we have:

$$\mathbb{E}[X] \le (2\log_2 m)\mathbb{P}[X \le 2\log_2 m] + m\mathbb{P}[X > 2\log_2 m]$$
$$\le (2\log_2 m) \times 1 + m \times \frac{1}{m} = O(\log m)$$

Problem 4: (Extensions of Bloom Filters)

In class we saw the basic Bloom filter, where we used k independent random hash-functions $\{h_1, h_2, \ldots, h_k\}$ to hash a set S of m elements into an array A of n bits. Recall that in order to get a false-positive rate of $\delta = O(1)$, we chose n = cm, for some constant c, and k c ln 2 (in particular, for false-positive rate of 2%, we used c = 8 and k = 6). We now see how this basic structure can be modified in various ways.

Part (a)

In order to support item deletions in addition to insertions and look-ups, we can replace each bit A[i] in A with a counter – when an element is hashed to bucket i, we increment A[i], and to delete an element x, we decrement the counter for each A[i] corresponding to $\{h_1(x), h_2(x), \ldots, h_k(x)\}$. As before, if we use n = O(m) and *fixed-size counters* of *b*-bits. What is the probability that counter A[i] overflows after inserting m elements? Also argue that $O(\log \log m)$ -bit counters are necessary and sufficient to prevent overflow in any counter (with high probability).

Solution: Note that a *b* bit counter can count up to 2^b elements. For counter A[i] overflow, we need at least 2^b+1 elements to be hashed to bucket *i* – this happens with probability $\sum_{k=2^b+1}^{m} {m \choose k} \frac{1}{(cm)^k} \left(1 - \frac{1}{cm}\right)^{m-k}$ For $m >> 2^b$, we can use ${m \choose k} \approx m^k/k!$ to get that the probability of overflow $\approx \frac{1}{c^{2^b}(2^b)!}$.

Moreover, from class you know that if m balls are dropped uniformly at random into $\theta(m)$ bins, then with high probability, the maximum loaded bin has $\Theta\left(\frac{\log m}{\log \log m}\right)$ balls. Thus the bucket with the maximum number of hashed items has $\Theta\left(\frac{\log m}{\log \log m}\right)$ items, and hence needs a counter of size $\Theta\left(\log\left(\frac{\log m}{\log \log m}\right)\right) = \Theta(\log \log m)$ bits.

Part (b)

Suppose we use the same hash functions $\{h_1, h_2, \ldots, h_k\}$ to hash two separate sets S_1 and S_2 (both of size m) – let the resulting Bloom filters (each of n bits) be A_1 and A_2 respectively. Suppose we create a new Bloom filter A_{OR} by taking the bit-wise OR of the bits of A_1 and A_2 . Is this the same as the Bloom filter constructed by adding the elements of $S_1 \cup S_1$ one at a time?

Solution: Recall that in a Bloom filter, every cell is set to 1 if any of the elements are hashed to it – this can be thought of representing each element x in terms of a fingerprint, which has 1s in all the k positions where x is hashed, and then taking the OR of all the fingerprints. Thus, taking the bitwise OR of two Bloom filters obtained from S_1 and S_2 does give the same Bloom filter as that created by adding each element of $S_1 \cup S_2$.

Part (c)

Suppose we create another new Bloom filter A_{AND} by taking the bit-wise AND of the bits of A_1 and A_2 . Argue that this is not the same as the Bloom filter constructed by adding the elements of $S_1 \cap S_2$ one at a time. However, also argue that A_{AND} can be used to check if $x \in S_1 \cap S_2$ with one-sided error (i.e., give an algorithm that always returns TRUE if $x \in S_1 \cap S_2$), and explain how we can get false-positives.

Solution: First, note that since we use the same hash functions $\{h_1, h_2, \ldots, h_k\}$, hence for any $x \in S_1 \cap S_2$, the positions corresponding to $h_1(x), h_2(x), \ldots, h_k(x)$ are set to 1 in both A_1 and A_2 , and thus in the bitwise-AND of A_1 and A_2 . However, additional positions in A_{AND} may also be falsely set to 1 – in particular, a position b, where $b \neq h_i(x)$ for any $x \in S_1 \cap S_2$ and $i \in [k]$, can be set to 1 if there exists elements $y \in S_1 \setminus S_2$, $z \in S_2 \setminus S_1$ such that $h_i(y) = h_j(z)$ for some $i, j \in [k]$. Note that there are $|S_1 \setminus S_2| \times |S_2 \setminus S_1|$ pairs of such false collisions, and each one may collide with probability 1/n.

Problem 5: (Similarity functions with no linear-LSH family)

In class we discussed locality sensitive hashing for the Hamming and Jaccard similarity functions Recall that for a ground set \mathcal{U} and subsets $A, B \subseteq \mathcal{U}$, these two distances corresponded to:

$$s_{Hamming}(A,B) = 1 - \frac{A\Delta B}{|\mathcal{U}|}$$
, $s_{Jaccard}(A,B) = \frac{|A \cap B|}{|A \cup B|}$,

where $A\Delta B$ is the symmetric difference between sets A and B (i.e., $A\Delta B = (A \cup B) \setminus (A \cap B)$) Moreover, in both cases, we obtained families of hash-functions H satisfying:

$$\mathbb{P}[h(x) = h(y)] = s(x, y)$$

A natural question to ask is if such *linear-LSH families* exists for other similarity functions, in particular, for two other natural subset-similarity measures – the *Overlap* and *Dice* similarities:

$$s_{Overlap}(A,B) = \frac{|A \cap B|}{\min\{|A|,|B|\}} \quad , \quad d_{dice}(A,B) = \frac{2|A \cap B|}{|A|+|B|}$$

Part (a)

As in class, suppose we define a distance function $d: \mathcal{U} \times \mathcal{U} \to [0, 1]$ corresponding to a similarity function as d(x, y) = 1 - s(x, y). Show that for a given similarity function s, if we have a linear-LSH family H, i.e., whose hash functions satisfy $\mathbb{P}[h(x) = h(y)] = s(x, y)$, then the distance functions must obey the triangle inequality, i.e., for any $x, y, z \in \mathcal{U}$, we must have:

$$d(x,y) + d(y,z) \ge d(x,z)$$

Solution: Consider x, y, z distinct elements in \mathcal{U} . Note that we have $\mathbb{P}[h(x) \neq h(y)] = d(x, y)$, and similarly for x, z and y, z. Now we have:

$$\mathbb{P}[h(x) \neq h(y)] = \mathbb{P}[h(x) \neq h(y), h(x) = h(z)] + \mathbb{P}[h(x) \neq h(y), h(x) \neq h(z)]$$
$$\leq \mathbb{P}[h(y) \neq h(z)] + \mathbb{P}[h(x) \neq h(z)]$$
$$= d(y, z) + d(x, z)$$

Part (b)

Using the above result, prove that the Overlap and Dice similarity functions can not have a linear-LSH family.

Solution: We just need to show via examples that the Overlap and Dice similarities do not obey the triangle inequality. For example, consider the ground set $\mathcal{U} = \{1, 2, \ldots, 8\}$, and the sets $A = \{1, 2, 3, 4, 5\}, B = \{1, 2, 6, 7, 8\}, C = \{1, 2, 3, 4, 6, 8\}$. Now we have $s_{Overlap}(A, B) = 2/5, s_{Overlap}(B, C) = s_{Overlap}(A, C) = 4/5$, and hence $d_{Overlap}(A, B) = 3/5 > 1/5 + 1/5 = d_{Overlap}(B, C) = d_{Overlap}(A, C)$. Similarly, we have $s_{Dice}(A, B) = 2/5, s_{Dice}(B, C) = s_{Dice}(A, C) = 8/11$, and hence $d_{Dice}(A, B) = 3/5 > 3/11 + 3/11 = d_{Dice}(B, C) = d_{Dice}(A, C)$