ORIE 4154 - Pricing and Market Design

Module 2: Network RM and Approximate DP (The Network RM Dynamic Program)

Instructor: Sid Banerjee, ORIE

Cornell University

From Last Class: The Network RM Problem

Pricing/admission control for products using interlinked resources.
Connecting flights, multi-day hotel bookings, project teams, etc.

- Resources
- Perishable units of capacity managed by firm
E.g. Seats on a flight, hotel room nights, employee hours
- Constrained (C_{i} units of resource i)
- Perishable (each resource expires at a certain time)
- Product
- Bundle of resources for selling to customer E.g. multi-leg flight, multiple days stay at hotel
- Each product has a specified set of resources and price

What we need

- Compact representation for DP formulation

From Last Class: The Network RM Problem

Pricing/admission control for products using interlinked resources.
Connecting flights, multi-day hotel bookings, project teams, etc.

- Resources
- Perishable units of capacity managed by firm
E.g. Seats on a flight, hotel room nights, employee hours
- Constrained (C_{i} units of resource i)
- Perishable (each resource expires at a certain time)
- Product
- Bundle of resources for selling to customer E.g. multi-leg flight, multiple days stay at hotel
- Each product has a specified set of resources and price

What we need

- Compact representation for DP formulation
- Good approximations for solving the DP

Formal Model for Network RM

Basic Setting

- Time periods $\{1,2, \ldots, T\}$
- m resources $\{1,2, \ldots, m\}$
- Resource i has initial capacity c_{i}; expires at T

Products

- n unique products $\{0,1, \ldots, n\}$
- Product $j \equiv$ (price p_{j}, resource reqt A_{j})
- Incidence vector $A_{j}=\left\{a_{i j}\right\}$, where $a_{i j}=\mathbb{1}_{\{j \text { uses resource } i\}}$

More generally, $a_{i j}=\#$ of units of resource i used by product j Incidence Matrix: $A=\left[A_{1}, A_{2}, \ldots, A_{n}\right](m \times n$ matrix $)$

Incidence Matrix: Example 1

- 2 resources
- Flight I from SFO to DIA
- Flight 2 from DIA to STL
- Suppose we have 3 products and two fare classes: 6 ODFs
- SFO to DIA full fare
- SFO to DIA discount fare
- DIA to STL full fare

$$
A=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

- DIA to STL discount fare
- SFO to STL full fare
- SFO to STL discount fare

Courtesy: Paat Rusmevichentong

Incidence Matrix: Example 2

- Suppose a hotel offers I-night, 2-night, and 3-night stays only.
- Resources: Room nights
- Products: Combinations of arrival night and length of stay.
- Assume one fare class for each product, that is, number of ODFs is the same as the number of products.
- Incidence matrix for I week of resources.

Resources/ Length of Stay	Arrival Date														
	Sunday			Monday			Tuesday			Wednesday			Thursday		
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Sunday	1	1	I	0	0	0	0	0	0	0	0	0	0	0	0
Monday	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0
Tuesday	0	0	1	0	1	1	1	1	1	0	0	0	0	0	0
Wednesday	0	0	0	0	0	1	0	1	1	1	1	1	0	0	0
Thursday	0	0	0	0	0	0	0	0	1	0	1	1	1	I	I
Friday	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
Saturday	0	0	0	0	0	0	0	0	0	0	0	0	0	0	I

Incidence Matrix: Example 2 (some caveats)

- In theory, the network management problem for a hotel stretches out indefinitely into the future.
- In practice, a hotel will only accept booking for some limited period into the future (often a year), limiting the number of resources and products that need to be managed.
- Moreover, in theory a hotel offers and infinite number of products, since customers can buy any length of stay.
- In practice, lengths of stay longer than 14 nights are extremely rare at most hotels, and hotels usually managed them as a single product.

Courtesy: Paat Rusmevichentong

The Network RM Dynamic Program

- m resources, n products, time periods $\{1,2, \ldots, T\}$
- Resource i has initial capacity c_{i}
- Product $j \equiv$ (price p_{j}, resource reqt A_{j}), where $a_{i j}=\mathbb{1}_{\{j \text { uses resource } i\}}$

Dynamics and actions

- In period t, state of system is $\underline{\mathbf{x}}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$
- At most one request arrives in each period:
- No request arrives with probability λ_{0}
- Request for product j arrives with probability λ_{j}
- $\sum_{j=0}^{n} \lambda_{j}=1$
- Action/policy vector: $\underline{\mathbf{u}}(t, \underline{\mathbf{x}})=\left[u_{1}(t, \underline{\mathbf{x}}), u_{2}(t, \underline{\mathbf{x}}), \ldots, u_{n}(t, \underline{\mathbf{x}})\right]$,

$$
u_{j}(t, \underline{\mathbf{x}})=\mathbb{1}_{\{\text {Sell product } j \text { in period } t \text { with initial state } \underline{\mathbf{x}}\}}
$$

The Network RM Dynamic Program

- m resources, n products, time periods $\{1,2, \ldots, T\}$
- Resource i has initial capacity c_{i}
- Product $j \equiv\left(p_{j}, A_{j}\right)$, where $a_{i j}=\mathbb{1}_{\{j \text { uses resource } i\}}$
- Request for product j arrives w.p. λ_{j}; no request w.p λ_{0}

For any $t, \underline{\mathbf{x}}$, value function $V_{t}(\underline{\mathbf{x}})$ denotes the maximum expected revenue that can be obtained from period t until T given a remaining capacity $\underline{\mathbf{x}}$ among the m resources

The Bellman Equation

$$
V_{t}(\underline{\mathbf{x}})=\lambda_{0} V_{t+1}(\underline{\mathbf{x}})+\sum_{j=1}^{n} \lambda_{j} \max _{u \in\{0,1\}: u \cdot A_{j} \leq \underline{\mathbf{x}}}\left\{u \cdot p_{j}+V_{t+1}\left(\underline{\mathbf{x}}-u \cdot A_{j}\right)\right\}
$$

where $u \cdot A_{j} \leq \underline{\mathbf{x}}$ is equivalent to $u \cdot a_{i j} \leq x_{i} \forall i$

The Network RM Dynamic Program: Optimal Policy

The Bellman Equation

$$
V_{t}(\underline{\mathbf{x}})=\lambda_{0} V_{t+1}(\underline{\mathbf{x}})+\sum_{j=1}^{n} \lambda_{j} \max _{u \in\{0,1\}: u \cdot A_{j} \leq \underline{\mathbf{x}}}\left\{u \cdot p_{j}+V_{t+1}\left(\underline{\mathbf{x}}-u \cdot A_{j}\right)\right\}
$$

Suppose we are given $V_{t+1}(\underline{\mathbf{x}})$ for all states $\underline{\mathbf{x}}$. Then we can solve for the optimal policy $\underline{\mathbf{u}}^{\star}(t, \underline{\mathbf{x}})$ to get for each product j :

$$
u_{j}^{\star}(t, \underline{\mathbf{x}})= \begin{cases}1 & \text { if } p_{j}>V_{t+1}(\underline{\mathbf{x}})-V_{t+1}\left(x-A_{j}\right), \quad \text { AND } A_{j} \leq \underline{\mathbf{x}} \\ 0 & \text { otherwise }\end{cases}
$$

Intuition: Sell a product only if its price exceeds the opportunity cost of losing future sales due to reduction in resource capacities.

The Curse of Dimensionality

Thus, we have the optimal policy $\underline{\mathbf{u}}^{\star}(t, \underline{\mathbf{x}})$

$$
u_{j}^{\star}(t, \underline{\mathbf{x}})= \begin{cases}1 & \text { if } p_{j}>V_{t+1}(\underline{\mathbf{x}})-V_{t+1}\left(x-A_{j}\right), \text { AND } A_{j} \leq \underline{\mathbf{x}} \\ 0 & \text { otherwise }\end{cases}
$$

Thus, given $V_{t}(\underline{\mathbf{x}})$ for all $t, \underline{\mathbf{x}}$, we can find the optimal policy.

- However, $\underline{\mathbf{x}}$ can take $\prod_{i=1}^{n}\left(c_{i}+1\right) \approx(c+1)^{m}$ states!
- This is the curse of dimensionality: infeasible to store $V_{t}(\underline{\mathbf{x}})$ exactly for moderately sized problems

To get around this, we want good approximations of $V_{t}(\underline{\mathbf{x}})$

