ORIE 4154 - Pricing and Market Design

Module 1: Capacity-based Revenue Management (Intro to Stochastic Dynamic Programming)

Instructor: Sid Banerjee, ORIE

Cornell University

Single-resource two-stage capacity allocation

C units of capacity available	Accept up to b customers at discount-fare p	Fill remaining seats at the full-fare p_{h}
	D, customers arrive desiring discount-fares	$\begin{aligned} & D_{h} \text { customers } \\ & \text { arrive desiring } \\ & \text { full-fares } \end{aligned}$

$$
R\left(b, D_{\ell}, D_{h}\right)=p_{\ell} \min \left\{b, D_{\ell}\right\}+p_{h} \min \left\{D_{h}, \max \left\{C-b, C-D_{\ell}\right\}\right\}
$$

Aim: Choose $b^{*}=\arg \max _{b \in[0, C]} \mathbb{E}\left[R\left(b, D_{\ell}, D_{h}\right)\right]$

Single-resource two-stage capacity allocation

C units of capacity available	Accept up to b customers at discount-fare p	Fill remaining seats at the full-fare p_{h}
	D, customers arrive desiring discount-fares	D_{h} customers arrive desiring full-fares

$$
R\left(b, D_{\ell}, D_{h}\right)=p_{\ell} \min \left\{b, D_{\ell}\right\}+p_{h} \min \left\{D_{h}, \max \left\{C-b, C-D_{\ell}\right\}\right\}
$$

Aim: Choose $b^{*}=\arg \max _{b \in[0, C]} \mathbb{E}\left[R\left(b, D_{\ell}, D_{h}\right)\right]$

Littlewood's Rule

Assume D_{ℓ}, D_{h} are continuous, b can be fractional - then optimal booking limit b^{*} (or protection level $C-b^{*}$) satisfies:

$$
C-b^{*}=y^{*}=F_{h}^{-1}\left(1-\frac{p_{\ell}}{p_{h}}\right)
$$

Single-resource two-stage capacity allocation

Alternate derivation of Littlewood's rule (Discrete RVs)

$$
R\left(b, D_{\ell}, D_{h}\right)=p_{\ell} \min \left\{b, D_{\ell}\right\}+p_{h} \min \left\{D_{h}, \max \left\{C-b, C-D_{\ell}\right\}\right\}
$$

Suppose D_{h}, D_{ℓ} are discrete RVs

Single-resource two-stage capacity allocation

Alternate derivation of Littlewood's rule (Discrete RVs)

$$
R\left(b, D_{\ell}, D_{h}\right)=p_{\ell} \min \left\{b, D_{\ell}\right\}+p_{h} \min \left\{D_{h}, \max \left\{C-b, C-D_{\ell}\right\}\right\}
$$

Suppose D_{h}, D_{ℓ} are discrete RVs
Main Idea: Analyze $\Delta r(b)=\mathbb{E}\left[R\left(b+1, D_{\ell}, D_{h}\right)-R\left(b, D_{\ell}, D_{h}\right)\right]$

Single-resource two-stage capacity allocation

Alternate derivation of Littlewood's rule (Discrete RVs)

$$
R\left(b, D_{\ell}, D_{h}\right)=p_{\ell} \min \left\{b, D_{\ell}\right\}+p_{h} \min \left\{D_{h}, \max \left\{C-b, C-D_{\ell}\right\}\right\}
$$

Suppose D_{h}, D_{ℓ} are discrete RVs Main Idea: Analyze $\Delta r(b)=\mathbb{E}\left[R\left(b+1, D_{\ell}, D_{h}\right)-R\left(b, D_{\ell}, D_{h}\right)\right]$

$$
\begin{aligned}
& \Delta r(b)=p_{\ell} \mathbb{E}\left[\min \left\{b+1, D_{\ell}\right\}-\min \left\{b, D_{\ell}\right\}\right]+ \\
& p_{h} \mathbb{E}\left[\min \left\{D_{h}, \max \left\{C-(b+1), C-D_{\ell}\right\}\right\}-\right. \\
& \left.\min \left\{D_{h}, \max \left\{C-b, C-D_{\ell}\right\}\right\}\right]
\end{aligned}
$$

Littlewood's Rule (Discrete RVs)

- $\min \left\{b+1, D_{\ell}\right\}-\min \left\{b, D_{\ell}\right\}= \begin{cases}1 & \text { if } D_{\ell} \geq b+1 \\ 0 & \text { o.w. }\end{cases}$

Littlewood's Rule (Discrete RVs)

- $\min \left\{b+1, D_{\ell}\right\}-\min \left\{b, D_{\ell}\right\}= \begin{cases}1 & \text { if } D_{\ell} \geq b+1 \\ 0 & \text { o.w. }\end{cases}$
- $\min \left\{D_{h}, \max \left\{C-(b+1), C-D_{\ell}\right\}-\min \left\{D_{h}, \max \left\{C-b, C-D_{\ell}\right\}\right.\right.$
$= \begin{cases}-1 & \text { if }\left\{D_{\ell} \geq b+1\right\} \text { AND }\left\{D_{h} \geq C-b\right\} \\ 0 & \text { o.w. }\end{cases}$

Littlewood's Rule (Discrete RVs)

- $\min \left\{b+1, D_{\ell}\right\}-\min \left\{b, D_{\ell}\right\}= \begin{cases}1 & \text { if } D_{\ell} \geq b+1 \\ 0 & \text { o.w. }\end{cases}$
- $\min \left\{D_{h}, \max \left\{C-(b+1), C-D_{\ell}\right\}-\min \left\{D_{h}, \max \left\{C-b, C-D_{\ell}\right\}\right.\right.$
$= \begin{cases}-1 & \text { if }\left\{D_{\ell} \geq b+1\right\} \text { AND }\left\{D_{h} \geq C-b\right\} \\ 0 & \text { o.w. }\end{cases}$
$\bullet \mathbb{E}\left[\min \left\{b+1, D_{\ell}\right\}-\min \left\{b, D_{\ell}\right\}\right]=\mathbb{P}\left[D_{\ell} \geq b+1\right]$
- $\mathbb{E}\left[\min \left\{D_{h}, \max \left\{C-(b+1), C-D_{\ell}\right\}\right\}-\min \left\{D_{h}, \max \left\{C-b, C-D_{\ell}\right\}\right\}\right]$
$=-\mathbb{P}\left[D_{\ell} \geq b+1\right] \mathbb{P}\left[D_{h} \geq C-b\right]$ (Note: via independence of D_{h}, D_{ℓ})

Littlewood's Rule (Discrete RVs)

- $\min \left\{b+1, D_{\ell}\right\}-\min \left\{b, D_{\ell}\right\}= \begin{cases}1 & \text { if } D_{\ell} \geq b+1 \\ 0 & \text { o.w. }\end{cases}$
- $\min \left\{D_{h}, \max \left\{C-(b+1), C-D_{\ell}\right\}-\min \left\{D_{h}, \max \left\{C-b, C-D_{\ell}\right\}\right.\right.$
$= \begin{cases}-1 & \text { if }\left\{D_{\ell} \geq b+1\right\} \text { AND }\left\{D_{h} \geq C-b\right\} \\ 0 & \text { o.w. }\end{cases}$
$\bullet \mathbb{E}\left[\min \left\{b+1, D_{\ell}\right\}-\min \left\{b, D_{\ell}\right\}\right]=\mathbb{P}\left[D_{\ell} \geq b+1\right]$
- $\mathbb{E}\left[\min \left\{D_{h}, \max \left\{C-(b+1), C-D_{\ell}\right\}\right\}-\min \left\{D_{h}, \max \left\{C-b, C-D_{\ell}\right\}\right\}\right]$
$=-\mathbb{P}\left[D_{\ell} \geq b+1\right] \mathbb{P}\left[D_{h} \geq C-b\right]$ (Note: via independence of D_{h}, D_{ℓ})

$$
\Delta r(b)=\mathbb{P}\left[D_{\ell} \geq b+1\right]\left(p_{\ell}-p_{h} \mathbb{P}\left[D_{h} \geq C-b\right]\right)
$$

Littlewood's Rule (Discrete RVs)

$$
\Delta r(b)=r(b+1)-r(b)=\mathbb{P}\left[D_{\ell} \geq b+1\right]\left(p_{\ell}-p_{h} \mathbb{P}\left[D_{h} \geq C-b\right]\right)
$$

Littlewood's Rule (Discrete RVs)

$$
\Delta r(b)=r(b+1)-r(b)=\mathbb{P}\left[D_{\ell} \geq b+1\right]\left(p_{\ell}-p_{h} \mathbb{P}\left[D_{h} \geq C-b\right]\right)
$$

- Observe that $\Delta r(b)$ is non-increasing in b
- Thus $r(b)$ is maximized at $\min _{b}\{\Delta r(b)<0\}$

Littlewood's Rule (Discrete RVs)

$$
\Delta r(b)=r(b+1)-r(b)=\mathbb{P}\left[D_{\ell} \geq b+1\right]\left(p_{\ell}-p_{h} \mathbb{P}\left[D_{h} \geq C-b\right]\right)
$$

- Observe that $\Delta r(b)$ is
 non-increasing in b
- Thus $r(b)$ is maximized at $\min _{b}\{\Delta r(b)<0\}$
- In terms of protection level $y=C-b$, we have:

$$
y^{*}=\max _{y \in \mathbb{N}}\left\{\mathbb{P}\left[D_{h} \geq y\right]>\frac{p_{\ell}}{p_{h}}\right\}
$$

Littlewood's Rule (Discrete RVs)

$$
\Delta r(b)=r(b+1)-r(b)=\mathbb{P}\left[D_{\ell} \geq b+1\right]\left(p_{\ell}-p_{h} \mathbb{P}\left[D_{h} \geq C-b\right]\right)
$$

- Observe that $\Delta r(b)$ is
 non-increasing in b
- Thus $r(b)$ is maximized at $\min _{b}\{\Delta r(b)<0\}$
- In terms of protection level $y=C-b$, we have: $y^{*}=\max _{y \in \mathbb{N}}\left\{\mathbb{P}\left[D_{h} \geq y\right]>\frac{p_{\ell}}{p_{h}}\right\}$
- Questions/Observations:

Why is y^{*} independent of C ?
Why is y^{*} independent of D_{ℓ} ?

Littlewood's Rule (Discrete RVs)

$$
\Delta r(b)=r(b+1)-r(b)=\mathbb{P}\left[D_{\ell} \geq b+1\right]\left(p_{\ell}-p_{h} \mathbb{P}\left[D_{h} \geq C-b\right]\right)
$$

- Observe that $\Delta r(b)$ is
 non-increasing in b
- Thus $r(b)$ is maximized at $\min _{b}\{\Delta r(b)<0\}$
- In terms of protection level $y=C-b$, we have: $y^{*}=\max _{y \in \mathbb{N}}\left\{\mathbb{P}\left[D_{h} \geq y\right]>\frac{p_{\ell}}{p_{h}}\right\}$
- Questions/Observations:

Why is y^{*} independent of C ?
Why is y^{*} independent of D_{ℓ} ?
Perfect segmentation + dynamics

Problem: Single-resource three-stage capacity allocation

- Seller constraints:
- (Setting) C seats, 3 fare-classes with prices $p_{1}>p_{2}>p_{3}$
- (Control) Booking limits $\left\{b_{2}, b_{3}\right\}$

Problem: Single-resource three-stage capacity allocation

- Seller constraints:
- (Setting) C seats, 3 fare-classes with prices $p_{1}>p_{2}>p_{3}$
- (Control) Booking limits $\left\{b_{2}, b_{3}\right\}$
- Buyer behavior and information structure:
- (Perfect Segmentation) Fare-classes arrive separately
- (Dynamics) Sequential arrival in increasing order of fares
- (Demand Distributions) Demand for fare-class i is $D_{i} \sim F_{i}$

Problem: Single-resource three-stage capacity allocation

- Seller constraints:
- (Setting) C seats, 3 fare-classes with prices $p_{1}>p_{2}>p_{3}$
- (Control) Booking limits $\left\{b_{2}, b_{3}\right\}$
- Buyer behavior and information structure:
- (Perfect Segmentation) Fare-classes arrive separately
- (Dynamics) Sequential arrival in increasing order of fares
- (Demand Distributions) Demand for fare-class i is $D_{i} \sim F_{i}$

How can we solve for optimal booking limits?

Problem: Single-resource three-stage capacity allocation

- Seller constraints:
- (Setting) C seats, 3 fare-classes with prices $p_{1}>p_{2}>p_{3}$
- (Control) Booking limits $\left\{b_{2}, b_{3}\right\}$
- Buyer behavior and information structure:
- (Perfect Segmentation) Fare-classes arrive separately
- (Dynamics) Sequential arrival in increasing order of fares
- (Demand Distributions) Demand for fare-class i is $D_{i} \sim F_{i}$

How can we solve for optimal booking limits?
Naive approach: Write expected revenue function $R\left(b_{3}, b_{2}\right)$, and maximize over $b_{3}+b_{2} \leq C$

- Seems somewhat daunting...

Problem: Single-resource three-stage capacity allocation

- Seller constraints:
- (Setting) C seats, 3 fare-classes with prices $p_{1}>p_{2}>p_{3}$
- (Control) Booking limits $\left\{b_{2}, b_{3}\right\}$
- Buyer behavior and information structure:
- (Perfect Segmentation) Fare-classes arrive separately
- (Dynamics) Sequential arrival in increasing order of fares
- (Demand Distributions) Demand for fare-class i is $D_{i} \sim F_{i}$

How can we solve for optimal booking limits?
Naive approach: Write expected revenue function $R\left(b_{3}, b_{2}\right)$, and maximize over $b_{3}+b_{2} \leq C$

- Seems somewhat daunting...

Idea: If an oracle gave us X_{3}, the number of lowest-fare class seats sold - then we have a two fare-class problem with $C-X_{3}$ seats!

First, let us play a game

- Setup: A pile of 10 toothpicks
- You will be playing against an oblivious random adversary (called Computer).
- A Sequence of Events in Each Iteration:
- You start first. You can take either I or 2 toothpicks from the pile.
- After you make the decision, I will flip a random fair coin. If the coin lands HEAD, the Computer will remove I toothpick from the pile. Otherwise, the Computer will remove 2 toothpicks.
- The game proceeds until all toothpicks are removed from the pile.
- If you end up holding the last toothpick, you win $\$ 20$. Otherwise, you get nothing.

Analyzing our game

Divide game into rounds: in each round, you go first followed by COMPUTER
In $k^{t h}$ round, computer picks X_{k} toothpicks ($X_{k} \sim$ UNIFORM $\{1,2\}$)

Observations

Analyzing our game

Divide game into rounds: in each round, you go first followed by COMPUTER In $k^{\text {th }}$ round, computer picks X_{k} toothpicks ($X_{k} \sim$ UNIFORM $\{1,2\}$)

Observations

- If the game starts with 1 or 2 toothpicks, then we win! (If game starts with 0 toothpicks, assume we lose.)

Analyzing our game

Divide game into rounds: in each round, you go first followed by COMPUTER In $k^{t h}$ round, computer picks X_{k} toothpicks ($X_{k} \sim$ UNIFORM $\{1,2\}$)

Observations

- If the game starts with 1 or 2 toothpicks, then we win! (If game starts with 0 toothpicks, assume we lose.)
- Suppose after $k-1$ rounds, game has $S_{k} \geq 3$ toothpicks left, and let S_{k+1} be number of toothpicks left when we play next:
- If we pick 1 match, then $S_{k+1}=S_{k}-1-X_{k}$
- If we pick 2 match, then $S_{k+1}=S_{k}-2-X_{k}$

Analyzing our game

Divide game into rounds: in each round, you go first followed by COMPUTER In $k^{t h}$ round, computer picks X_{k} toothpicks ($X_{k} \sim$ UNIFORM $\{1,2\}$)

Observations

- If the game starts with 1 or 2 toothpicks, then we win! (If game starts with 0 toothpicks, assume we lose.)
- Suppose after $k-1$ rounds, game has $S_{k} \geq 3$ toothpicks left, and let S_{k+1} be number of toothpicks left when we play next:
- If we pick 1 match, then $S_{k+1}=S_{k}-1-X_{k}$
- If we pick 2 match, then $S_{k+1}=S_{k}-2-X_{k}$

We will now see how to 'solve' this game (i.e., figure out an optimal set of moves) via Dynamic Programming.

Analyzing our game

- If after $k-1$ rounds, game has $S_{k} \geq 3$ toothpicks, and S_{k+1} is number of toothpicks when we play next:
- If we pick 1 match, then $S_{k+1}=S_{k}-1-X_{k}$
- If we pick 2 match, then $S_{k+1}=S_{k}-2-X_{k}$ (where $X_{k} \sim$ UNIFORM $\{1,2\}$)

Let $V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks

Analyzing our game

- If after $k-1$ rounds, game has $S_{k} \geq 3$ toothpicks, and S_{k+1} is number of toothpicks when we play next:
- If we pick 1 match, then $S_{k+1}=S_{k}-1-X_{k}$
- If we pick 2 match, then $S_{k+1}=S_{k}-2-X_{k}$ (where $X_{k} \sim$ UNIFORM $\{1,2\}$)

Let $V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks

- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$

Analyzing our game

- If after $k-1$ rounds, game has $S_{k} \geq 3$ toothpicks, and S_{k+1} is number of toothpicks when we play next:
- If we pick 1 match, then $S_{k+1}=S_{k}-1-X_{k}$
- If we pick 2 match, then $S_{k+1}=S_{k}-2-X_{k}$ (where $X_{k} \sim$ UNIFORM $\{1,2\}$)

Let $V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks

- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$
- $V(3)=\max \mathbb{E}[$ Reward $]$ if round starts with 3 toothpicks

Analyzing our game

- If after $k-1$ rounds, game has $S_{k} \geq 3$ toothpicks, and S_{k+1} is number of toothpicks when we play next:
- If we pick 1 match, then $S_{k+1}=S_{k}-1-X_{k}$
- If we pick 2 match, then $S_{k+1}=S_{k}-2-X_{k}$ (where $X_{k} \sim$ UNIFORM $\{1,2\}$)

Let $V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks

- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$
- $V(3)=\max \mathbb{E}[$ Reward $]$ if round starts with 3 toothpicks $=\max \{\mathbb{E}[R$ if we pick 1 of 3$], \mathbb{E}[R$ if we pick 2 of 3$]\}$

Analyzing our game

- If after $k-1$ rounds, game has $S_{k} \geq 3$ toothpicks, and S_{k+1} is number of toothpicks when we play next:
- If we pick 1 match, then $S_{k+1}=S_{k}-1-X_{k}$
- If we pick 2 match, then $S_{k+1}=S_{k}-2-X_{k}$ (where $X_{k} \sim$ UNIFORM $\{1,2\}$)

Let $V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks

- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$
- $V(3)=\max \mathbb{E}[$ Reward $]$ if round starts with 3 toothpicks $=\max \{\mathbb{E}[R$ if we pick 1 of 3$], \mathbb{E}[R$ if we pick 2 of 3$]\}$ $=\max \{\mathbb{E}[V(3-1-X)], \mathbb{E}[V(3-2-X)]\}$

Analyzing our game

- If after $k-1$ rounds, game has $S_{k} \geq 3$ toothpicks, and S_{k+1} is number of toothpicks when we play next:
- If we pick 1 match, then $S_{k+1}=S_{k}-1-X_{k}$
- If we pick 2 match, then $S_{k+1}=S_{k}-2-X_{k}$ (where $X_{k} \sim$ UNIFORM $\{1,2\}$)

Let $V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks

- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$
- $V(3)=\max \mathbb{E}[$ Reward $]$ if round starts with 3 toothpicks

$$
\begin{aligned}
& =\max \{\mathbb{E}[R \text { if we pick } 1 \text { of } 3], \mathbb{E}[R \text { if we pick } 2 \text { of } 3]\} \\
& =\max \{\mathbb{E}[V(3-1-X)], \mathbb{E}[V(3-2-X)]\} \\
& =\max \left\{\left(\frac{V(1)+V(0)}{2}\right),\left(\frac{V(0)+V(-1)}{2}\right)\right\}=10
\end{aligned}
$$

Analyzing our game

$V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks

- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$
- $V(3)=\max \{0.5 \cdot(V(1)+V(0)), 0.5 \cdot(V(0)+V(-1))\}=10$

Analyzing our game

$V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks

- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$
- $V(3)=\max \{0.5 \cdot(V(1)+V(0)), 0.5 \cdot(V(0)+V(-1))\}=10$
- $V(4)=\max \{0.5 \cdot(V(2)+V(1)), 0.5 \cdot(V(1)+V(0))\}=20$

Analyzing our game

$V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks

- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$
- $V(3)=\max \{0.5 \cdot(V(1)+V(0)), 0.5 \cdot(V(0)+V(-1))\}=10$
- $V(4)=\max \{0.5 \cdot(V(2)+V(1)), 0.5 \cdot(V(1)+V(0))\}=20$
- $V(5)=\max \{0.5 \cdot(V(3)+V(2)), 0.5 \cdot(V(2)+V(1))\}=20$

Analyzing our game

$V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks

- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$
- $V(3)=\max \{0.5 \cdot(V(1)+V(0)), 0.5 \cdot(V(0)+V(-1))\}=10$
- $V(4)=\max \{0.5 \cdot(V(2)+V(1)), 0.5 \cdot(V(1)+V(0))\}=20$
- $V(5)=\max \{0.5 \cdot(V(3)+V(2)), 0.5 \cdot(V(2)+V(1))\}=20$
- $V(6)=\max \{0.5 \cdot(V(4)+V(3)), 0.5 \cdot(V(3)+V(2))\}=15$

Analyzing our game

$V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks

- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$
- $V(3)=\max \{0.5 \cdot(V(1)+V(0)), 0.5 \cdot(V(0)+V(-1))\}=10$
- $V(4)=\max \{0.5 \cdot(V(2)+V(1)), 0.5 \cdot(V(1)+V(0))\}=20$
- $V(5)=\max \{0.5 \cdot(V(3)+V(2)), 0.5 \cdot(V(2)+V(1))\}=20$
- $V(6)=\max \{0.5 \cdot(V(4)+V(3)), 0.5 \cdot(V(3)+V(2))\}=15$
- $V(7)=\max \{0.5 \cdot(V(5)+V(4)), 0.5 \cdot(V(4)+V(3))\}=20$

Analyzing our game

$V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks

- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$
- $V(3)=\max \{0.5 \cdot(V(1)+V(0)), 0.5 \cdot(V(0)+V(-1))\}=10$
- $V(4)=\max \{0.5 \cdot(V(2)+V(1)), 0.5 \cdot(V(1)+V(0))\}=20$
- $V(5)=\max \{0.5 \cdot(V(3)+V(2)), 0.5 \cdot(V(2)+V(1))\}=20$
- $V(6)=\max \{0.5 \cdot(V(4)+V(3)), 0.5 \cdot(V(3)+V(2))\}=15$
- $V(7)=\max \{0.5 \cdot(V(5)+V(4)), 0.5 \cdot(V(4)+V(3))\}=20$
- $V(8)=\max \{0.5 \cdot(V(6)+V(5)), 0.5 \cdot(V(5)+V(4))\}=20$

Analyzing our game

$V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks

- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$
- $V(3)=\max \{0.5 \cdot(V(1)+V(0)), 0.5 \cdot(V(0)+V(-1))\}=10$
- $V(4)=\max \{0.5 \cdot(V(2)+V(1)), 0.5 \cdot(V(1)+V(0))\}=20$
- $V(5)=\max \{0.5 \cdot(V(3)+V(2)), 0.5 \cdot(V(2)+V(1))\}=20$
- $V(6)=\max \{0.5 \cdot(V(4)+V(3)), 0.5 \cdot(V(3)+V(2))\}=15$
- $V(7)=\max \{0.5 \cdot(V(5)+V(4)), 0.5 \cdot(V(4)+V(3))\}=20$
- $V(8)=\max \{0.5 \cdot(V(6)+V(5)), 0.5 \cdot(V(5)+V(4))\}=20$
- $V(9)=\max \{0.5 \cdot(V(7)+V(6)), 0.5 \cdot(V(6)+V(5))\}=17.5$
- $V(10)=\max \{0.5 \cdot(V(8)+V(7)), 0.5 \cdot(V(7)+V(6))\}=20$

Analyzing our game

$V(x)=\max \mathbb{E}[$ Reward $]$ if round starts with x toothpicks

- $V(-1)=V(0)=0, V(1)=V(2)=20$. Want to find $V(10)$
- $V(3)=\max \{0.5 \cdot(V(1)+V(0)), 0.5 \cdot(V(0)+V(-1))\}=10$
- $V(4)=\max \{0.5 \cdot(V(2)+V(1)), 0.5 \cdot(V(1)+V(0))\}=20$
- $V(5)=\max \{0.5 \cdot(V(3)+V(2)), 0.5 \cdot(V(2)+V(1))\}=20$
- $V(6)=\max \{0.5 \cdot(V(4)+V(3)), 0.5 \cdot(V(3)+V(2))\}=15$
- $V(7)=\max \{0.5 \cdot(V(5)+V(4)), 0.5 \cdot(V(4)+V(3))\}=20$
- $V(8)=\max \{0.5 \cdot(V(6)+V(5)), 0.5 \cdot(V(5)+V(4))\}=20$
- $V(9)=\max \{0.5 \cdot(V(7)+V(6)), 0.5 \cdot(V(6)+V(5))\}=17.5$
- $V(10)=\max \{0.5 \cdot(V(8)+V(7)), 0.5 \cdot(V(7)+V(6))\}=20$

Optimal policy: Move to nearest multiple of 3 We always win if $x \neq 0 \bmod (3)$

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making Problem: $\max _{a: \text { :"Actions" }} \mathbb{E}_{X}[f(a, X)]$

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making Problem: $\max _{a: " A c t i o n s " ~} \mathbb{E}_{X}[f(a, X)]$

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making Problem: $\max _{a: " A c t i o n s " ~} \mathbb{E}_{X}[f(a, X)]$

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making Problem: $\max _{a: " A c t i o n s " ~} \mathbb{E}_{X}[f(a, X)]$

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making Problem: $\max _{a: " A c t i o n s " ~} \mathbb{E}_{X}[f(a, X)]$

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making Problem: $\max _{a: " A c t i o n s " ~} \mathbb{E}_{X}[f(a, X)]$

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making Problem: $\max _{a: " A c t i o n s " ~} \mathbb{E}_{X}[f(a, X)]$

Main Ideas

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making Problem: $\max _{a: " A c t i o n s " ~} \mathbb{E}_{X}[f(a, X)]$

Main Ideas

- State: S - summary of history

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making Problem: $\max _{a: " A c t i o n s " ~} \mathbb{E}_{X}[f(a, X)]$

Main Ideas

- State: S - summary of history
- Value function: $V(\cdot)$ - 'value-to-go' for given state)

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making Problem: $\max _{a: " A c t i o n s " ~} \mathbb{E}_{X}[f(a, X)]$

Main Ideas

- State: S - summary of history
- Value function: $V(\cdot)$ - 'value-to-go' for given state)
- Bellman Equation (or DP equation):

$$
V\left(S_{t}\right)=\max _{a_{t}: \text { actions }}\left\{R_{t}\left(S_{t}, a_{t}\right)+V\left(S_{t+1}\left(S_{t}, a_{t}\right)\right)\right\}
$$

