
1/11

ORIE 4154 - Pricing and Market Design

Module 1: Capacity-based Revenue Management
(Intro to Stochastic Dynamic Programming)

Instructor: Sid Banerjee, ORIE

ORIE 4154 Module 1: Capacity-based RM



2/11

Single-resource two-stage capacity allocation

R(b,D`,Dh) = p` min{b,D`}+ ph min{Dh,max{C−b,C−D`}}

Aim: Choose b∗ = argmaxb∈[0,C]E[R(b,D`,Dh)]

Littlewood’s Rule
Assume D`,Dh are continuous, b can be fractional – then optimal
booking limit b∗ (or protection level C−b∗) satisfies:

C−b∗ = y∗ = F−1
h

(
1− p`

ph

)

ORIE 4154 Module 1: Capacity-based RM



2/11

Single-resource two-stage capacity allocation

R(b,D`,Dh) = p` min{b,D`}+ ph min{Dh,max{C−b,C−D`}}

Aim: Choose b∗ = argmaxb∈[0,C]E[R(b,D`,Dh)]

Littlewood’s Rule
Assume D`,Dh are continuous, b can be fractional – then optimal
booking limit b∗ (or protection level C−b∗) satisfies:

C−b∗ = y∗ = F−1
h

(
1− p`

ph

)
ORIE 4154 Module 1: Capacity-based RM



3/11

Single-resource two-stage capacity allocation
Alternate derivation of Littlewood’s rule (Discrete RVs)

R(b,D`,Dh) = p` min{b,D`}+ ph min{Dh,max{C−b,C−D`}}

Suppose Dh,D` are discrete RVs

Main Idea: Analyze ∆r(b) = E[R(b+1,D`,Dh)−R(b,D`,Dh)]

∆r(b) =p`E
[

min{b+1,D`}−min{b,D`}
]
+

phE
[

min{Dh,max{C− (b+1),C−D`}}−

min{Dh,max{C−b,C−D`}}
]

ORIE 4154 Module 1: Capacity-based RM



3/11

Single-resource two-stage capacity allocation
Alternate derivation of Littlewood’s rule (Discrete RVs)

R(b,D`,Dh) = p` min{b,D`}+ ph min{Dh,max{C−b,C−D`}}

Suppose Dh,D` are discrete RVs
Main Idea: Analyze ∆r(b) = E[R(b+1,D`,Dh)−R(b,D`,Dh)]

∆r(b) =p`E
[

min{b+1,D`}−min{b,D`}
]
+

phE
[

min{Dh,max{C− (b+1),C−D`}}−

min{Dh,max{C−b,C−D`}}
]

ORIE 4154 Module 1: Capacity-based RM



3/11

Single-resource two-stage capacity allocation
Alternate derivation of Littlewood’s rule (Discrete RVs)

R(b,D`,Dh) = p` min{b,D`}+ ph min{Dh,max{C−b,C−D`}}

Suppose Dh,D` are discrete RVs
Main Idea: Analyze ∆r(b) = E[R(b+1,D`,Dh)−R(b,D`,Dh)]

∆r(b) =p`E
[

min{b+1,D`}−min{b,D`}
]
+

phE
[

min{Dh,max{C− (b+1),C−D`}}−

min{Dh,max{C−b,C−D`}}
]

ORIE 4154 Module 1: Capacity-based RM



4/11

Littlewood’s Rule (Discrete RVs)

• min{b+1,D`}−min{b,D`}=

{
1 if D` ≥ b+1
0 o.w.

• min{Dh,max{C− (b+1),C−D`}−min{Dh,max{C−b,C−D`}

=

{
−1 if {D` ≥ b+1} AND {Dh ≥C−b}
0 o.w.

• E
[

min{b+1,D`}−min{b,D`}
]
= P[D` ≥ b+1]

• E
[

min{Dh,max{C− (b+1),C−D`}}−min{Dh,max{C−b,C−D`}}
]

=−P[D` ≥ b+1]P[Dh ≥C−b] (Note: via independence of Dh,D`)

∆r(b) = P[D` ≥ b+1] (p`− phP[Dh ≥C−b])

ORIE 4154 Module 1: Capacity-based RM



4/11

Littlewood’s Rule (Discrete RVs)

• min{b+1,D`}−min{b,D`}=

{
1 if D` ≥ b+1
0 o.w.

• min{Dh,max{C− (b+1),C−D`}−min{Dh,max{C−b,C−D`}

=

{
−1 if {D` ≥ b+1} AND {Dh ≥C−b}
0 o.w.

• E
[

min{b+1,D`}−min{b,D`}
]
= P[D` ≥ b+1]

• E
[

min{Dh,max{C− (b+1),C−D`}}−min{Dh,max{C−b,C−D`}}
]

=−P[D` ≥ b+1]P[Dh ≥C−b] (Note: via independence of Dh,D`)

∆r(b) = P[D` ≥ b+1] (p`− phP[Dh ≥C−b])

ORIE 4154 Module 1: Capacity-based RM



4/11

Littlewood’s Rule (Discrete RVs)

• min{b+1,D`}−min{b,D`}=

{
1 if D` ≥ b+1
0 o.w.

• min{Dh,max{C− (b+1),C−D`}−min{Dh,max{C−b,C−D`}

=

{
−1 if {D` ≥ b+1} AND {Dh ≥C−b}
0 o.w.

• E
[

min{b+1,D`}−min{b,D`}
]
= P[D` ≥ b+1]

• E
[

min{Dh,max{C− (b+1),C−D`}}−min{Dh,max{C−b,C−D`}}
]

=−P[D` ≥ b+1]P[Dh ≥C−b] (Note: via independence of Dh,D`)

∆r(b) = P[D` ≥ b+1] (p`− phP[Dh ≥C−b])

ORIE 4154 Module 1: Capacity-based RM



4/11

Littlewood’s Rule (Discrete RVs)

• min{b+1,D`}−min{b,D`}=

{
1 if D` ≥ b+1
0 o.w.

• min{Dh,max{C− (b+1),C−D`}−min{Dh,max{C−b,C−D`}

=

{
−1 if {D` ≥ b+1} AND {Dh ≥C−b}
0 o.w.

• E
[

min{b+1,D`}−min{b,D`}
]
= P[D` ≥ b+1]

• E
[

min{Dh,max{C− (b+1),C−D`}}−min{Dh,max{C−b,C−D`}}
]

=−P[D` ≥ b+1]P[Dh ≥C−b] (Note: via independence of Dh,D`)

∆r(b) = P[D` ≥ b+1] (p`− phP[Dh ≥C−b])

ORIE 4154 Module 1: Capacity-based RM



5/11

Littlewood’s Rule (Discrete RVs)

∆r(b) = r(b+1)− r(b) = P[D` ≥ b+1] (p`− phP[Dh ≥C−b])

• Observe that ∆r(b) is
non-increasing in b

• Thus r(b) is maximized at
minb{∆r(b)< 0}
• In terms of protection level

y =C−b, we have:
y∗ = maxy∈N

{
P[Dh ≥ y]> p`

ph

}
• Questions/Observations:
Why is y∗ independent of C?
Why is y∗ independent of D`?

Perfect segmentation + dynamics

ORIE 4154 Module 1: Capacity-based RM



5/11

Littlewood’s Rule (Discrete RVs)

∆r(b) = r(b+1)− r(b) = P[D` ≥ b+1] (p`− phP[Dh ≥C−b])

• Observe that ∆r(b) is
non-increasing in b

• Thus r(b) is maximized at
minb{∆r(b)< 0}

• In terms of protection level
y =C−b, we have:
y∗ = maxy∈N

{
P[Dh ≥ y]> p`

ph

}
• Questions/Observations:
Why is y∗ independent of C?
Why is y∗ independent of D`?

Perfect segmentation + dynamics

ORIE 4154 Module 1: Capacity-based RM



5/11

Littlewood’s Rule (Discrete RVs)

∆r(b) = r(b+1)− r(b) = P[D` ≥ b+1] (p`− phP[Dh ≥C−b])

• Observe that ∆r(b) is
non-increasing in b

• Thus r(b) is maximized at
minb{∆r(b)< 0}
• In terms of protection level

y =C−b, we have:
y∗ = maxy∈N

{
P[Dh ≥ y]> p`

ph

}

• Questions/Observations:
Why is y∗ independent of C?
Why is y∗ independent of D`?

Perfect segmentation + dynamics

ORIE 4154 Module 1: Capacity-based RM



5/11

Littlewood’s Rule (Discrete RVs)

∆r(b) = r(b+1)− r(b) = P[D` ≥ b+1] (p`− phP[Dh ≥C−b])

• Observe that ∆r(b) is
non-increasing in b

• Thus r(b) is maximized at
minb{∆r(b)< 0}
• In terms of protection level

y =C−b, we have:
y∗ = maxy∈N

{
P[Dh ≥ y]> p`

ph

}
• Questions/Observations:
Why is y∗ independent of C?
Why is y∗ independent of D`?

Perfect segmentation + dynamics

ORIE 4154 Module 1: Capacity-based RM



5/11

Littlewood’s Rule (Discrete RVs)

∆r(b) = r(b+1)− r(b) = P[D` ≥ b+1] (p`− phP[Dh ≥C−b])

• Observe that ∆r(b) is
non-increasing in b

• Thus r(b) is maximized at
minb{∆r(b)< 0}
• In terms of protection level

y =C−b, we have:
y∗ = maxy∈N

{
P[Dh ≥ y]> p`

ph

}
• Questions/Observations:
Why is y∗ independent of C?
Why is y∗ independent of D`?
Perfect segmentation + dynamics

ORIE 4154 Module 1: Capacity-based RM



6/11

Problem: Single-resource three-stage capacity allocation

• Seller constraints:
- (Setting) C seats, 3 fare-classes with prices p1 > p2 > p3
- (Control) Booking limits {b2,b3}

• Buyer behavior and information structure:
- (Perfect Segmentation) Fare-classes arrive separately
- (Dynamics) Sequential arrival in increasing order of fares
- (Demand Distributions) Demand for fare-class i is Di ∼ Fi

How can we solve for optimal booking limits?

Naive approach: Write expected revenue function R(b3,b2), and
maximize over b3 +b2 ≤C

• Seems somewhat daunting...

Idea: If an oracle gave us X3, the number of lowest-fare class seats
sold – then we have a two fare-class problem with C−X3 seats!

ORIE 4154 Module 1: Capacity-based RM



6/11

Problem: Single-resource three-stage capacity allocation

• Seller constraints:
- (Setting) C seats, 3 fare-classes with prices p1 > p2 > p3
- (Control) Booking limits {b2,b3}

• Buyer behavior and information structure:
- (Perfect Segmentation) Fare-classes arrive separately
- (Dynamics) Sequential arrival in increasing order of fares
- (Demand Distributions) Demand for fare-class i is Di ∼ Fi

How can we solve for optimal booking limits?

Naive approach: Write expected revenue function R(b3,b2), and
maximize over b3 +b2 ≤C

• Seems somewhat daunting...

Idea: If an oracle gave us X3, the number of lowest-fare class seats
sold – then we have a two fare-class problem with C−X3 seats!

ORIE 4154 Module 1: Capacity-based RM



6/11

Problem: Single-resource three-stage capacity allocation

• Seller constraints:
- (Setting) C seats, 3 fare-classes with prices p1 > p2 > p3
- (Control) Booking limits {b2,b3}

• Buyer behavior and information structure:
- (Perfect Segmentation) Fare-classes arrive separately
- (Dynamics) Sequential arrival in increasing order of fares
- (Demand Distributions) Demand for fare-class i is Di ∼ Fi

How can we solve for optimal booking limits?

Naive approach: Write expected revenue function R(b3,b2), and
maximize over b3 +b2 ≤C

• Seems somewhat daunting...

Idea: If an oracle gave us X3, the number of lowest-fare class seats
sold – then we have a two fare-class problem with C−X3 seats!

ORIE 4154 Module 1: Capacity-based RM



6/11

Problem: Single-resource three-stage capacity allocation

• Seller constraints:
- (Setting) C seats, 3 fare-classes with prices p1 > p2 > p3
- (Control) Booking limits {b2,b3}

• Buyer behavior and information structure:
- (Perfect Segmentation) Fare-classes arrive separately
- (Dynamics) Sequential arrival in increasing order of fares
- (Demand Distributions) Demand for fare-class i is Di ∼ Fi

How can we solve for optimal booking limits?

Naive approach: Write expected revenue function R(b3,b2), and
maximize over b3 +b2 ≤C

• Seems somewhat daunting...

Idea: If an oracle gave us X3, the number of lowest-fare class seats
sold – then we have a two fare-class problem with C−X3 seats!

ORIE 4154 Module 1: Capacity-based RM



6/11

Problem: Single-resource three-stage capacity allocation

• Seller constraints:
- (Setting) C seats, 3 fare-classes with prices p1 > p2 > p3
- (Control) Booking limits {b2,b3}

• Buyer behavior and information structure:
- (Perfect Segmentation) Fare-classes arrive separately
- (Dynamics) Sequential arrival in increasing order of fares
- (Demand Distributions) Demand for fare-class i is Di ∼ Fi

How can we solve for optimal booking limits?

Naive approach: Write expected revenue function R(b3,b2), and
maximize over b3 +b2 ≤C

• Seems somewhat daunting...

Idea: If an oracle gave us X3, the number of lowest-fare class seats
sold – then we have a two fare-class problem with C−X3 seats!

ORIE 4154 Module 1: Capacity-based RM



7/11

First, let us play a game

Courtesy: Paat Rusmevichientong

(Aside: Variant of a game called Nim; see Youtube video for details)

ORIE 4154 Module 1: Capacity-based RM

https://en.wikipedia.org/wiki/Nim
https://www.youtube.com/watch?v=niMjxNtiuu8


8/11

Analyzing our game

Divide game into rounds: in each round, you go first followed by COMPUTER
In kth round, computer picks Xk toothpicks (Xk ∼ UNIFORM{1,2})

Observations

• If the game starts with 1 or 2 toothpicks, then we win!
(If game starts with 0 toothpicks, assume we lose.)
• Suppose after k−1 rounds, game has Sk ≥ 3 toothpicks left,
and let Sk+1 be number of toothpicks left when we play next:

- If we pick 1 match, then Sk+1 = Sk−1−Xk
- If we pick 2 match, then Sk+1 = Sk−2−Xk

We will now see how to ‘solve’ this game (i.e., figure out an
optimal set of moves) via Dynamic Programming.

ORIE 4154 Module 1: Capacity-based RM



8/11

Analyzing our game

Divide game into rounds: in each round, you go first followed by COMPUTER
In kth round, computer picks Xk toothpicks (Xk ∼ UNIFORM{1,2})

Observations
• If the game starts with 1 or 2 toothpicks, then we win!
(If game starts with 0 toothpicks, assume we lose.)

• Suppose after k−1 rounds, game has Sk ≥ 3 toothpicks left,
and let Sk+1 be number of toothpicks left when we play next:

- If we pick 1 match, then Sk+1 = Sk−1−Xk
- If we pick 2 match, then Sk+1 = Sk−2−Xk

We will now see how to ‘solve’ this game (i.e., figure out an
optimal set of moves) via Dynamic Programming.

ORIE 4154 Module 1: Capacity-based RM



8/11

Analyzing our game

Divide game into rounds: in each round, you go first followed by COMPUTER
In kth round, computer picks Xk toothpicks (Xk ∼ UNIFORM{1,2})

Observations
• If the game starts with 1 or 2 toothpicks, then we win!
(If game starts with 0 toothpicks, assume we lose.)
• Suppose after k−1 rounds, game has Sk ≥ 3 toothpicks left,
and let Sk+1 be number of toothpicks left when we play next:

- If we pick 1 match, then Sk+1 = Sk−1−Xk
- If we pick 2 match, then Sk+1 = Sk−2−Xk

We will now see how to ‘solve’ this game (i.e., figure out an
optimal set of moves) via Dynamic Programming.

ORIE 4154 Module 1: Capacity-based RM



8/11

Analyzing our game

Divide game into rounds: in each round, you go first followed by COMPUTER
In kth round, computer picks Xk toothpicks (Xk ∼ UNIFORM{1,2})

Observations
• If the game starts with 1 or 2 toothpicks, then we win!
(If game starts with 0 toothpicks, assume we lose.)
• Suppose after k−1 rounds, game has Sk ≥ 3 toothpicks left,
and let Sk+1 be number of toothpicks left when we play next:

- If we pick 1 match, then Sk+1 = Sk−1−Xk
- If we pick 2 match, then Sk+1 = Sk−2−Xk

We will now see how to ‘solve’ this game (i.e., figure out an
optimal set of moves) via Dynamic Programming.

ORIE 4154 Module 1: Capacity-based RM



9/11

Analyzing our game

• If after k−1 rounds, game has Sk ≥ 3 toothpicks, and Sk+1 is
number of toothpicks when we play next:

- If we pick 1 match, then Sk+1 = Sk−1−Xk
- If we pick 2 match, then Sk+1 = Sk−2−Xk

(where Xk ∼ UNIFORM{1,2})

Let V (x) = maxE[Reward] if round starts with x toothpicks

- V (−1) =V (0) = 0, V (1) =V (2) = 20. Want to find V (10)

- V (3) = maxE[Reward] if round starts with 3 toothpicks

= max
{
E[R if we pick 1 of 3],E[R if we pick 2 of 3]

}
= max

{
E[V (3−1−X)],E[V (3−2−X)]

}
= max

{(
V (1)+V (0)

2

)
,
(

V (0)+V (−1)
2

)}
= 10

ORIE 4154 Module 1: Capacity-based RM



9/11

Analyzing our game

• If after k−1 rounds, game has Sk ≥ 3 toothpicks, and Sk+1 is
number of toothpicks when we play next:

- If we pick 1 match, then Sk+1 = Sk−1−Xk
- If we pick 2 match, then Sk+1 = Sk−2−Xk

(where Xk ∼ UNIFORM{1,2})

Let V (x) = maxE[Reward] if round starts with x toothpicks
- V (−1) =V (0) = 0, V (1) =V (2) = 20. Want to find V (10)

- V (3) = maxE[Reward] if round starts with 3 toothpicks

= max
{
E[R if we pick 1 of 3],E[R if we pick 2 of 3]

}
= max

{
E[V (3−1−X)],E[V (3−2−X)]

}
= max

{(
V (1)+V (0)

2

)
,
(

V (0)+V (−1)
2

)}
= 10

ORIE 4154 Module 1: Capacity-based RM



9/11

Analyzing our game

• If after k−1 rounds, game has Sk ≥ 3 toothpicks, and Sk+1 is
number of toothpicks when we play next:

- If we pick 1 match, then Sk+1 = Sk−1−Xk
- If we pick 2 match, then Sk+1 = Sk−2−Xk

(where Xk ∼ UNIFORM{1,2})

Let V (x) = maxE[Reward] if round starts with x toothpicks
- V (−1) =V (0) = 0, V (1) =V (2) = 20. Want to find V (10)

- V (3) = maxE[Reward] if round starts with 3 toothpicks

= max
{
E[R if we pick 1 of 3],E[R if we pick 2 of 3]

}
= max

{
E[V (3−1−X)],E[V (3−2−X)]

}
= max

{(
V (1)+V (0)

2

)
,
(

V (0)+V (−1)
2

)}
= 10

ORIE 4154 Module 1: Capacity-based RM



9/11

Analyzing our game

• If after k−1 rounds, game has Sk ≥ 3 toothpicks, and Sk+1 is
number of toothpicks when we play next:

- If we pick 1 match, then Sk+1 = Sk−1−Xk
- If we pick 2 match, then Sk+1 = Sk−2−Xk

(where Xk ∼ UNIFORM{1,2})

Let V (x) = maxE[Reward] if round starts with x toothpicks
- V (−1) =V (0) = 0, V (1) =V (2) = 20. Want to find V (10)

- V (3) = maxE[Reward] if round starts with 3 toothpicks
= max

{
E[R if we pick 1 of 3],E[R if we pick 2 of 3]

}

= max
{
E[V (3−1−X)],E[V (3−2−X)]

}
= max

{(
V (1)+V (0)

2

)
,
(

V (0)+V (−1)
2

)}
= 10

ORIE 4154 Module 1: Capacity-based RM



9/11

Analyzing our game

• If after k−1 rounds, game has Sk ≥ 3 toothpicks, and Sk+1 is
number of toothpicks when we play next:

- If we pick 1 match, then Sk+1 = Sk−1−Xk
- If we pick 2 match, then Sk+1 = Sk−2−Xk

(where Xk ∼ UNIFORM{1,2})

Let V (x) = maxE[Reward] if round starts with x toothpicks
- V (−1) =V (0) = 0, V (1) =V (2) = 20. Want to find V (10)

- V (3) = maxE[Reward] if round starts with 3 toothpicks
= max

{
E[R if we pick 1 of 3],E[R if we pick 2 of 3]

}
= max

{
E[V (3−1−X)],E[V (3−2−X)]

}

= max
{(

V (1)+V (0)
2

)
,
(

V (0)+V (−1)
2

)}
= 10

ORIE 4154 Module 1: Capacity-based RM



9/11

Analyzing our game

• If after k−1 rounds, game has Sk ≥ 3 toothpicks, and Sk+1 is
number of toothpicks when we play next:

- If we pick 1 match, then Sk+1 = Sk−1−Xk
- If we pick 2 match, then Sk+1 = Sk−2−Xk

(where Xk ∼ UNIFORM{1,2})

Let V (x) = maxE[Reward] if round starts with x toothpicks
- V (−1) =V (0) = 0, V (1) =V (2) = 20. Want to find V (10)

- V (3) = maxE[Reward] if round starts with 3 toothpicks
= max

{
E[R if we pick 1 of 3],E[R if we pick 2 of 3]

}
= max

{
E[V (3−1−X)],E[V (3−2−X)]

}
= max

{(
V (1)+V (0)

2

)
,
(

V (0)+V (−1)
2

)}
= 10

ORIE 4154 Module 1: Capacity-based RM



10/11

Analyzing our game

V (x) = maxE[Reward] if round starts with x toothpicks

• V (−1) =V (0) = 0, V (1) =V (2) = 20. Want to find V (10)
• V (3) = max

{
0.5 ·

(
V (1)+V (0)

)
,0.5 ·

(
V (0)+V (−1)

)}
= 10

• V (4) = max
{

0.5 ·
(
V (2)+V (1)

)
,0.5 ·

(
V (1)+V (0)

)}
= 20

• V (5) = max
{

0.5 ·
(
V (3)+V (2)

)
,0.5 ·

(
V (2)+V (1)

)}
= 20

• V (6) = max
{

0.5 ·
(
V (4)+V (3)

)
,0.5 ·

(
V (3)+V (2)

)}
= 15

• V (7) = max
{

0.5 ·
(
V (5)+V (4)

)
,0.5 ·

(
V (4)+V (3)

)}
= 20

• V (8) = max
{

0.5 ·
(
V (6)+V (5)

)
,0.5 ·

(
V (5)+V (4)

)}
= 20

• V (9) = max
{

0.5 ·
(
V (7)+V (6)

)
,0.5 ·

(
V (6)+V (5)

)}
= 17.5

• V (10) = max
{

0.5 ·
(
V (8)+V (7)

)
,0.5 ·

(
V (7)+V (6)

)}
= 20

Optimal policy: Move to nearest multiple of 3
We always win if x 6= 0 mod (3)

ORIE 4154 Module 1: Capacity-based RM



10/11

Analyzing our game

V (x) = maxE[Reward] if round starts with x toothpicks

• V (−1) =V (0) = 0, V (1) =V (2) = 20. Want to find V (10)
• V (3) = max

{
0.5 ·

(
V (1)+V (0)

)
,0.5 ·

(
V (0)+V (−1)

)}
= 10

• V (4) = max
{

0.5 ·
(
V (2)+V (1)

)
,0.5 ·

(
V (1)+V (0)

)}
= 20

• V (5) = max
{

0.5 ·
(
V (3)+V (2)

)
,0.5 ·

(
V (2)+V (1)

)}
= 20

• V (6) = max
{

0.5 ·
(
V (4)+V (3)

)
,0.5 ·

(
V (3)+V (2)

)}
= 15

• V (7) = max
{

0.5 ·
(
V (5)+V (4)

)
,0.5 ·

(
V (4)+V (3)

)}
= 20

• V (8) = max
{

0.5 ·
(
V (6)+V (5)

)
,0.5 ·

(
V (5)+V (4)

)}
= 20

• V (9) = max
{

0.5 ·
(
V (7)+V (6)

)
,0.5 ·

(
V (6)+V (5)

)}
= 17.5

• V (10) = max
{

0.5 ·
(
V (8)+V (7)

)
,0.5 ·

(
V (7)+V (6)

)}
= 20

Optimal policy: Move to nearest multiple of 3
We always win if x 6= 0 mod (3)

ORIE 4154 Module 1: Capacity-based RM



10/11

Analyzing our game

V (x) = maxE[Reward] if round starts with x toothpicks

• V (−1) =V (0) = 0, V (1) =V (2) = 20. Want to find V (10)
• V (3) = max

{
0.5 ·

(
V (1)+V (0)

)
,0.5 ·

(
V (0)+V (−1)

)}
= 10

• V (4) = max
{

0.5 ·
(
V (2)+V (1)

)
,0.5 ·

(
V (1)+V (0)

)}
= 20

• V (5) = max
{

0.5 ·
(
V (3)+V (2)

)
,0.5 ·

(
V (2)+V (1)

)}
= 20

• V (6) = max
{

0.5 ·
(
V (4)+V (3)

)
,0.5 ·

(
V (3)+V (2)

)}
= 15

• V (7) = max
{

0.5 ·
(
V (5)+V (4)

)
,0.5 ·

(
V (4)+V (3)

)}
= 20

• V (8) = max
{

0.5 ·
(
V (6)+V (5)

)
,0.5 ·

(
V (5)+V (4)

)}
= 20

• V (9) = max
{

0.5 ·
(
V (7)+V (6)

)
,0.5 ·

(
V (6)+V (5)

)}
= 17.5

• V (10) = max
{

0.5 ·
(
V (8)+V (7)

)
,0.5 ·

(
V (7)+V (6)

)}
= 20

Optimal policy: Move to nearest multiple of 3
We always win if x 6= 0 mod (3)

ORIE 4154 Module 1: Capacity-based RM



10/11

Analyzing our game

V (x) = maxE[Reward] if round starts with x toothpicks

• V (−1) =V (0) = 0, V (1) =V (2) = 20. Want to find V (10)
• V (3) = max

{
0.5 ·

(
V (1)+V (0)

)
,0.5 ·

(
V (0)+V (−1)

)}
= 10

• V (4) = max
{

0.5 ·
(
V (2)+V (1)

)
,0.5 ·

(
V (1)+V (0)

)}
= 20

• V (5) = max
{

0.5 ·
(
V (3)+V (2)

)
,0.5 ·

(
V (2)+V (1)

)}
= 20

• V (6) = max
{

0.5 ·
(
V (4)+V (3)

)
,0.5 ·

(
V (3)+V (2)

)}
= 15

• V (7) = max
{

0.5 ·
(
V (5)+V (4)

)
,0.5 ·

(
V (4)+V (3)

)}
= 20

• V (8) = max
{

0.5 ·
(
V (6)+V (5)

)
,0.5 ·

(
V (5)+V (4)

)}
= 20

• V (9) = max
{

0.5 ·
(
V (7)+V (6)

)
,0.5 ·

(
V (6)+V (5)

)}
= 17.5

• V (10) = max
{

0.5 ·
(
V (8)+V (7)

)
,0.5 ·

(
V (7)+V (6)

)}
= 20

Optimal policy: Move to nearest multiple of 3
We always win if x 6= 0 mod (3)

ORIE 4154 Module 1: Capacity-based RM



10/11

Analyzing our game

V (x) = maxE[Reward] if round starts with x toothpicks

• V (−1) =V (0) = 0, V (1) =V (2) = 20. Want to find V (10)
• V (3) = max

{
0.5 ·

(
V (1)+V (0)

)
,0.5 ·

(
V (0)+V (−1)

)}
= 10

• V (4) = max
{

0.5 ·
(
V (2)+V (1)

)
,0.5 ·

(
V (1)+V (0)

)}
= 20

• V (5) = max
{

0.5 ·
(
V (3)+V (2)

)
,0.5 ·

(
V (2)+V (1)

)}
= 20

• V (6) = max
{

0.5 ·
(
V (4)+V (3)

)
,0.5 ·

(
V (3)+V (2)

)}
= 15

• V (7) = max
{

0.5 ·
(
V (5)+V (4)

)
,0.5 ·

(
V (4)+V (3)

)}
= 20

• V (8) = max
{

0.5 ·
(
V (6)+V (5)

)
,0.5 ·

(
V (5)+V (4)

)}
= 20

• V (9) = max
{

0.5 ·
(
V (7)+V (6)

)
,0.5 ·

(
V (6)+V (5)

)}
= 17.5

• V (10) = max
{

0.5 ·
(
V (8)+V (7)

)
,0.5 ·

(
V (7)+V (6)

)}
= 20

Optimal policy: Move to nearest multiple of 3
We always win if x 6= 0 mod (3)

ORIE 4154 Module 1: Capacity-based RM



10/11

Analyzing our game

V (x) = maxE[Reward] if round starts with x toothpicks

• V (−1) =V (0) = 0, V (1) =V (2) = 20. Want to find V (10)
• V (3) = max

{
0.5 ·

(
V (1)+V (0)

)
,0.5 ·

(
V (0)+V (−1)

)}
= 10

• V (4) = max
{

0.5 ·
(
V (2)+V (1)

)
,0.5 ·

(
V (1)+V (0)

)}
= 20

• V (5) = max
{

0.5 ·
(
V (3)+V (2)

)
,0.5 ·

(
V (2)+V (1)

)}
= 20

• V (6) = max
{

0.5 ·
(
V (4)+V (3)

)
,0.5 ·

(
V (3)+V (2)

)}
= 15

• V (7) = max
{

0.5 ·
(
V (5)+V (4)

)
,0.5 ·

(
V (4)+V (3)

)}
= 20

• V (8) = max
{

0.5 ·
(
V (6)+V (5)

)
,0.5 ·

(
V (5)+V (4)

)}
= 20

• V (9) = max
{

0.5 ·
(
V (7)+V (6)

)
,0.5 ·

(
V (6)+V (5)

)}
= 17.5

• V (10) = max
{

0.5 ·
(
V (8)+V (7)

)
,0.5 ·

(
V (7)+V (6)

)}
= 20

Optimal policy: Move to nearest multiple of 3
We always win if x 6= 0 mod (3)

ORIE 4154 Module 1: Capacity-based RM



10/11

Analyzing our game

V (x) = maxE[Reward] if round starts with x toothpicks

• V (−1) =V (0) = 0, V (1) =V (2) = 20. Want to find V (10)
• V (3) = max

{
0.5 ·

(
V (1)+V (0)

)
,0.5 ·

(
V (0)+V (−1)

)}
= 10

• V (4) = max
{

0.5 ·
(
V (2)+V (1)

)
,0.5 ·

(
V (1)+V (0)

)}
= 20

• V (5) = max
{

0.5 ·
(
V (3)+V (2)

)
,0.5 ·

(
V (2)+V (1)

)}
= 20

• V (6) = max
{

0.5 ·
(
V (4)+V (3)

)
,0.5 ·

(
V (3)+V (2)

)}
= 15

• V (7) = max
{

0.5 ·
(
V (5)+V (4)

)
,0.5 ·

(
V (4)+V (3)

)}
= 20

• V (8) = max
{

0.5 ·
(
V (6)+V (5)

)
,0.5 ·

(
V (5)+V (4)

)}
= 20

• V (9) = max
{

0.5 ·
(
V (7)+V (6)

)
,0.5 ·

(
V (6)+V (5)

)}
= 17.5

• V (10) = max
{

0.5 ·
(
V (8)+V (7)

)
,0.5 ·

(
V (7)+V (6)

)}
= 20

Optimal policy: Move to nearest multiple of 3
We always win if x 6= 0 mod (3)

ORIE 4154 Module 1: Capacity-based RM



10/11

Analyzing our game

V (x) = maxE[Reward] if round starts with x toothpicks

• V (−1) =V (0) = 0, V (1) =V (2) = 20. Want to find V (10)
• V (3) = max

{
0.5 ·

(
V (1)+V (0)

)
,0.5 ·

(
V (0)+V (−1)

)}
= 10

• V (4) = max
{

0.5 ·
(
V (2)+V (1)

)
,0.5 ·

(
V (1)+V (0)

)}
= 20

• V (5) = max
{

0.5 ·
(
V (3)+V (2)

)
,0.5 ·

(
V (2)+V (1)

)}
= 20

• V (6) = max
{

0.5 ·
(
V (4)+V (3)

)
,0.5 ·

(
V (3)+V (2)

)}
= 15

• V (7) = max
{

0.5 ·
(
V (5)+V (4)

)
,0.5 ·

(
V (4)+V (3)

)}
= 20

• V (8) = max
{

0.5 ·
(
V (6)+V (5)

)
,0.5 ·

(
V (5)+V (4)

)}
= 20

• V (9) = max
{

0.5 ·
(
V (7)+V (6)

)
,0.5 ·

(
V (6)+V (5)

)}
= 17.5

• V (10) = max
{

0.5 ·
(
V (8)+V (7)

)
,0.5 ·

(
V (7)+V (6)

)}
= 20

Optimal policy: Move to nearest multiple of 3
We always win if x 6= 0 mod (3)

ORIE 4154 Module 1: Capacity-based RM



11/11

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: maxa:“Actions”EX [ f (a,X)]

Main Ideas

• State: S - summary of history
• Value function: V (·) - ‘value-to-go’ for given state)
• Bellman Equation (or DP equation):

V (St) = max
at :actions

{
Rt(St ,at)+V

(
St+1

(
St ,at

))}

ORIE 4154 Module 1: Capacity-based RM



11/11

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: maxa:“Actions”EX [ f (a,X)]

Main Ideas

• State: S - summary of history
• Value function: V (·) - ‘value-to-go’ for given state)
• Bellman Equation (or DP equation):

V (St) = max
at :actions

{
Rt(St ,at)+V

(
St+1

(
St ,at

))}

ORIE 4154 Module 1: Capacity-based RM



11/11

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: maxa:“Actions”EX [ f (a,X)]

Main Ideas

• State: S - summary of history
• Value function: V (·) - ‘value-to-go’ for given state)
• Bellman Equation (or DP equation):

V (St) = max
at :actions

{
Rt(St ,at)+V

(
St+1

(
St ,at

))}

ORIE 4154 Module 1: Capacity-based RM



11/11

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: maxa:“Actions”EX [ f (a,X)]

Main Ideas

• State: S - summary of history
• Value function: V (·) - ‘value-to-go’ for given state)
• Bellman Equation (or DP equation):

V (St) = max
at :actions

{
Rt(St ,at)+V

(
St+1

(
St ,at

))}

ORIE 4154 Module 1: Capacity-based RM



11/11

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: maxa:“Actions”EX [ f (a,X)]

Main Ideas

• State: S - summary of history
• Value function: V (·) - ‘value-to-go’ for given state)
• Bellman Equation (or DP equation):

V (St) = max
at :actions

{
Rt(St ,at)+V

(
St+1

(
St ,at

))}

ORIE 4154 Module 1: Capacity-based RM



11/11

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: maxa:“Actions”EX [ f (a,X)]

Main Ideas

• State: S - summary of history
• Value function: V (·) - ‘value-to-go’ for given state)
• Bellman Equation (or DP equation):

V (St) = max
at :actions

{
Rt(St ,at)+V

(
St+1

(
St ,at

))}

ORIE 4154 Module 1: Capacity-based RM



11/11

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: maxa:“Actions”EX [ f (a,X)]

Main Ideas

• State: S - summary of history
• Value function: V (·) - ‘value-to-go’ for given state)
• Bellman Equation (or DP equation):

V (St) = max
at :actions

{
Rt(St ,at)+V

(
St+1

(
St ,at

))}

ORIE 4154 Module 1: Capacity-based RM



11/11

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: maxa:“Actions”EX [ f (a,X)]

Main Ideas
• State: S - summary of history

• Value function: V (·) - ‘value-to-go’ for given state)
• Bellman Equation (or DP equation):

V (St) = max
at :actions

{
Rt(St ,at)+V

(
St+1

(
St ,at

))}

ORIE 4154 Module 1: Capacity-based RM



11/11

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: maxa:“Actions”EX [ f (a,X)]

Main Ideas
• State: S - summary of history
• Value function: V (·) - ‘value-to-go’ for given state)

• Bellman Equation (or DP equation):

V (St) = max
at :actions

{
Rt(St ,at)+V

(
St+1

(
St ,at

))}

ORIE 4154 Module 1: Capacity-based RM



11/11

(Stochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: maxa:“Actions”EX [ f (a,X)]

Main Ideas
• State: S - summary of history
• Value function: V (·) - ‘value-to-go’ for given state)
• Bellman Equation (or DP equation):

V (St) = max
at :actions

{
Rt(St ,at)+V

(
St+1

(
St ,at

))}

ORIE 4154 Module 1: Capacity-based RM


