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ORIE 4154 - Pricing and Market Design
Module 1: Capacity-based Revenue Management
(Intro to Stochastic Dynamic Programming)

Instructor: Sid Banerjee, ORIE

Cornell University
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Single-resource two-stage capacity allocation

Fill remaining

C units of Acceptup to b
capacity customers at seats at the
| available discount-fare p, full-fare p, |
T D, customers D, customers |
arrive desiring arrive desiring
discount-fares full-fares

R(b,Dy,Dy,) = pymin{b, Dy} + p, min{D;,max{C —b,C —Dy}}

Aim: Choose b* = argmaxc(o,c] E[R(b, D¢, Dy)]
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Single-resource two-stage capacity allocation

C units of Accept up to b Fill remaining
capacity customers at seats at the
| available discount-fare p, full-fare p;, |
D, customers D, customers |
arrive desiring arrive desiring

discount-fares full-fares
R(b,Dy,Dy,) = pymin{b,D;} + pymin{ Dy, max{C —b,C—Dy}}
Aim: Choose b* = argmaxc(o,c] E[R(b, D¢, Dy)]

Littlewood’s Rule

Assume Dy, D;, are continuous, b can be fractional — then optimal
booking limit b* (or protection level C — b*) satisfies:

C—b =y =F' (1-2)

Ph
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ingle-resource two-stage capacity allocation

Alternate derivation of Littlewood's rule (Discrete RVs)

R(b,Dy,Dy,) = pymin{b, D} + p; min{D;,,max{C — b,C — D} }

Suppose Dy, Dy are discrete RVs
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ingle-resource two-stage capacity allocation

Alternate derivation of Littlewood's rule (Discrete RVs)

R(b,Dy,Dy,) = pymin{b, D} + p; min{D;,,max{C — b,C — D} }

Suppose Dy, Dy are discrete RVs
Main Idea: Analyze Ar(b) =E[R(b+ 1,Dy,Dy,) — R(b,Dy,Dy)]
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S

ingle-resource two-stage capacity allocation

Alternate derivation of Littlewood's rule (Discrete RVs)

R(b,Dy,Dy) = pymin{b, Dy} + p min{D;,max{C —b,C — D} }
Suppose Dy, Dy are discrete RVs
Main Idea: Analyze Ar(b) =E[R(b+ 1,Dy,Dy,) — R(b,Dy,Dy)]
Ar(b) =p/E [min{b +1,D) — min{b,Dg}] n
ph]E[min{Dh,max{C— (b+1),C—Dy}}—

min{Dj, max{C —b,C — D[}}}
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L (Discrete RVs)

ittlewood’s Rule

1 ifD;>b+1

e min{b+1,Dy} —min{b,D;} = {
0 o.w.
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ittlewood'’s Rule (Discrete RVs)

1 ifDy>b+1
e min{b+1,Dy} —min{b,D;} = { V2h=0ar
0 o.w.
e min{Dj,max{C — (b+1),C — D¢} —min{Dy,max{C —b,C— Dy}
—1 if {D;>b+1} AND {D, >C—b}

0 0.W.
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ittlewood'’s Rule (Discrete RVs)

1 ifDy>b+1
e min{b+1,Dy} —min{b,D;} = { V2h=0ar
0 o.w.
e min{Dj,max{C — (b+1),C — D¢} —min{Dy,max{C —b,C— Dy}
—1 if {D;>b+1} AND {D, >C—b}

0 0.W.

oE [min{b—i— 1,D;} —min{b,D;}| =P[D; > b+ 1]

.E[min{ph,max{c— (b+1),C—Dy}} —min{Dh,max{C—b,C—Dg}}]
= —P[Dy > b+ 1]P[Dy, > C — b] (Note: via independence of Dy, Dy)
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ittlewood'’s Rule (Discrete RVs)

1 ifDy>b+1
e min{b+1,Dy} —min{b,D;} = { V2h=0ar
0 o.w.
e min{Dj,max{C — (b+1),C — D¢} —min{Dy,max{C —b,C— Dy}
—1 if {D;>b+1} AND {D, >C—b}

0 0.W.

oE [min{b—i— 1,D;} —min{b,D;}| =P[D; > b+ 1]

.E[min{ph,max{c— (b+1),C—Dy}} —mm{Dh,max{c—b,c—m}}]
= —P[Dy > b+ 1]P[Dy, > C — b] (Note: via independence of Dy, Dy)

Ar(b) — IP)[D( 2 b‘|‘ 1] (Pé —PhP[Dh Z C_b])
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L (Discrete RVs)

ittlewood’s Rule

Ar(b) = r(b+1) — r(b) = P[D; > b+ 1] (pr — psP[Dy > C — b))
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L (Discrete RVs)

ittlewood’s Rule

Ar(b) = r(b+1) — r(b) = P[D; > b+ 1] (pr — psP[Dy > C — b))

e Observe that Ar(b) is
non-increasing in b
e Thus r(b) is maximized at

“&O\O\D\Q min,{Ar(b) < 0}

< \O\o 5
r(b)

Ar(b)

Module 1: Capacity-based RM
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L (Discrete RVs)

ittlewood’s Rule

Ar(b) = r(b+1) — r(b) = P[D; > b+ 1] (pr — psP[Dy > C — b))

e Observe that Ar(b) is
J non-increasing in b
a e Thus r(b) is maximized at
miny{Ar(b) < 0}
‘\O\O\D\Q e In terms of protection level
h o) m\o o™ y=C—b, we have:
y" = maxyen {P[Dh >y] > %}
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L (Discrete RVs)

ittlewood’s Rule

Ar(b) =r(b+1)—r(b) =P[D¢ > b+1](p¢ — pulP[Dy, > C — b])

e Observe that Ar(b) is
J non-increasing in b

e Thus r(b) is maximized at

q miny {Ar(5) < 0}
e In terms of protection level
) r(b) \3\0 o y=C—b, we have:
y* = maxyen {P[Dh >y > %}

e Questions/Observations:
< Why is y* independent of C?
Why is y* independent of D,?
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L (Discrete RVs)

ittlewood’s Rule

Ar(b) =r(b+1)—r(b) =P[D¢ > b+1](p¢ — pulP[Dy, > C — b])

e Observe that Ar(b) is
J non-increasing in b

e Thus r(b) is maximized at

| min, {Ar(b) < 0}
e In terms of protection level
) r(b) \S\o o y=C—b, we have:
y* = maxyen {P[Dh >y > %}

e Questions/Observations:

< Why is y* independent of C?
Why is y* independent of D,?
Perfect segmentation + dynamics
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roblem: Single-resource three-stage capacity allocation
e Seller constraints:

- (Setting) C seats, 3 fare-classes with prices p; > p > p3
- (Control) Booking limits {b,,b3}
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roblem: Single-resource three-stage capacity allocation

e Seller constraints:
- (Setting) C seats, 3 fare-classes with prices p; > p > p3
- (Control) Booking limits {b,,b3}

e Buyer behavior and information structure:
- (Perfect Segmentation) Fare-classes arrive separately
- (Dynamics) Sequential arrival in increasing order of fares
- (Demand Distributions) Demand for fare-class i is D; ~ F;
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roblem: Single-resource three-stage capacity allocation

e Seller constraints:
- (Setting) C seats, 3 fare-classes with prices p; > p > p3
- (Control) Booking limits {b,,b3}

e Buyer behavior and information structure:
- (Perfect Segmentation) Fare-classes arrive separately
- (Dynamics) Sequential arrival in increasing order of fares
- (Demand Distributions) Demand for fare-class i is D; ~ F;

How can we solve for optimal booking limits?
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roblem: Single-resource three-stage capacity allocation

e Seller constraints:
- (Setting) C seats, 3 fare-classes with prices p; > p > p3
- (Control) Booking limits {b,,b3}

e Buyer behavior and information structure:
- (Perfect Segmentation) Fare-classes arrive separately
- (Dynamics) Sequential arrival in increasing order of fares
- (Demand Distributions) Demand for fare-class i is D; ~ F;

How can we solve for optimal booking limits?

Naive approach: Write expected revenue function R(b3,b;), and
maximize over b3+ by, <C

e Seems somewhat daunting...
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roblem: Single-resource three-stage capacity allocation

e Seller constraints:
- (Setting) C seats, 3 fare-classes with prices p; > p > p3
- (Control) Booking limits {b,,b3}

e Buyer behavior and information structure:
- (Perfect Segmentation) Fare-classes arrive separately
- (Dynamics) Sequential arrival in increasing order of fares
- (Demand Distributions) Demand for fare-class i is D; ~ F;

How can we solve for optimal booking limits?

Naive approach: Write expected revenue function R(b3,b;), and
maximize over b3+ by, <C

e Seems somewhat daunting...

Idea: If an oracle gave us X3, the number of lowest-fare class seats
sold — then we have a two fare-class problem with C — X3 seats!
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irst, let us play a game

* Setup: A pile of 10 toothpicks
* You will be playing against an oblivious random adversary (called
Computer).
* A Sequence of Events in Each Iteration:
—You start first. You can take either | or 2 toothpicks from the
pile.
— After you make the decision, | will flip a random fair coin. If the
coin lands HEAD, the Computer will remove | toothpick from
the pile. Otherwise, the Computer will remove 2 toothpicks.

* The game proceeds until all toothpicks are removed from the pile.
* If you end up holding the last toothpick, you win $20. Otherwise,
you get nothing.

Courtesy: Paat Rusmevichientong

(Aside: Variant of a game called Nim; see Youtube video for details)
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https://en.wikipedia.org/wiki/Nim
https://www.youtube.com/watch?v=niMjxNtiuu8

Analyzing our game

Divide game into rounds: in each round, you go first followed by COMPUTER
In k'™ round, computer picks X; toothpicks (X; ~ UNIFORM{1,2})
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Analyzing our game

Divide game into rounds: in each round, you go first followed by COMPUTER
In k'™ round, computer picks X; toothpicks (X; ~ UNIFORM{1,2})

Observations

e If the game starts with 1 or 2 toothpicks, then we win!
(If game starts with O toothpicks, assume we lose.)
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Analyzing our game

Divide game into rounds: in each round, you go first followed by COMPUTER
In k'™ round, computer picks X; toothpicks (X; ~ UNIFORM{1,2})

e If the game starts with 1 or 2 toothpicks, then we win!
(If game starts with O toothpicks, assume we lose.)
e Suppose after k— 1 rounds, game has S; > 3 toothpicks left,
and let S;. | be number of toothpicks left when we play next:
- If we pick 1 match, then S;, 1 =S, —1—X;
- If we pick 2 match, then S;. 1 =S, —2—X;
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Analyzing our game

Divide game into rounds: in each round, you go first followed by COMPUTER
In k'™ round, computer picks X; toothpicks (X; ~ UNIFORM{1,2})

Observations
e If the game starts with 1 or 2 toothpicks, then we win!
(If game starts with O toothpicks, assume we lose.)
e Suppose after k— 1 rounds, game has S; > 3 toothpicks left,
and let S;. | be number of toothpicks left when we play next:
- If we pick 1 match, then S;, 1 =S, —1—X;
- If we pick 2 match, then S; 1 =Sy —2 —X;

We will now see how to ‘solve’ this game (i.e., figure out an
optimal set of moves) via Dynamic Programming.
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nalyzing our game

e If after k— 1 rounds, game has Sy > 3 toothpicks, and Sy is
number of toothpicks when we play next:
- If we pick 1 match, then S =8y —1—X;
- If we pick 2 match, then Sp. 1 =S —2—X;
(where X; ~ UNIFORM{1,2})

Let V(x) = maxE[Reward] if round starts with x toothpicks
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nalyzing our game

e If after k— 1 rounds, game has Sy > 3 toothpicks, and Sy is
number of toothpicks when we play next:
- If we pick 1 match, then S =8y —1—X;
- If we pick 2 match, then Sp. 1 =S —2—X;
(where X; ~ UNIFORM{1,2})

Let V(x) = maxE[Reward] if round starts with x toothpicks
- V(=1)=V(0) =0, V(1) =V(2) = 20. Want to find V(10)
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nalyzing our game

e If after k— 1 rounds, game has Sy > 3 toothpicks, and Sy is
number of toothpicks when we play next:
- If we pick 1 match, then S =8y —1—X;
- If we pick 2 match, then Sp. 1 =S —2—X;
(where X; ~ UNIFORM{1,2})

Let V(x) = maxE[Reward] if round starts with x toothpicks
- V(=1)=V(0) =0, V(1) =V(2) = 20. Want to find V(10)
- V(3) = maxE[Reward] if round starts with 3 toothpicks
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nalyzing our game

e If after k— 1 rounds, game has Sy > 3 toothpicks, and Sy is
number of toothpicks when we play next:
- If we pick 1 match, then S =8y —1—X;
- If we pick 2 match, then Sp. 1 =S —2—X;
(where X; ~ UNIFORM{1,2})

Let V(x) = maxE[Reward] if round starts with x toothpicks
- V(=1)=V(0)=0, V(1) = V(2) = 20. Want to find V(10)

- V(3) = maxE[Reward] if round starts with 3 toothpicks
= max{IE[R if we pick 1 of 3], E[R if we pick 2 of 3]}
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nalyzing our game

e If after k— 1 rounds, game has Sy > 3 toothpicks, and Sy is
number of toothpicks when we play next:
- If we pick 1 match, then S =8y —1—X;
- If we pick 2 match, then Sp. 1 =S —2—X;
(where X; ~ UNIFORM{1,2})

Let V(x) = maxE[Reward] if round starts with x toothpicks
- V(=1)=V(0)=0, V(1) = V(2) = 20. Want to find V(10)

- V(3) = max E[Reward] if round starts with 3 toothpicks
= max{E[R if we pick 1 of 3], E[R if we pick 2 of 3]}

:max{E[V(3— 1 —X)],E[V(3—2_X)]}
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nalyzing our game

e If after k— 1 rounds, game has Sy > 3 toothpicks, and Sy is
number of toothpicks when we play next:
- If we pick 1 match, then S =8y —1—X;
- If we pick 2 match, then Sp. 1 =S —2—X;
(where X; ~ UNIFORM{1,2})

Let V(x) = maxE[Reward] if round starts with x toothpicks
- V(=1)=V(0)=0, V(1) = V(2) = 20. Want to find V(10)

- V(3) = max E[Reward] if round starts with 3 toothpicks
= max{E[R if we pick 1 of 3], E[R if we pick 2 of 3]}

- max{E[V(3 “1-X),E[V(3 —2—X)]}
— max { (v<1)gv<0)) ’ (v<o>+2v<—1>>} _ 10
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nalyzing our game

V(x) = max[E[Reward] if round starts with x toothpicks

e V(—1)=V(0)=0, V(1) =V(2) =20. Want to find V(10)
e V(3)=max{0.5- (V(1)+V(0)),0.5-(V(0)+V(-1))} =10
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nalyzing our game

V(x) = max[E[Reward] if round starts with x toothpicks

V(-1)=V(0)=0, V(1) =V(2)
V(3) =max {0.5- (V(1)+V(0)),
V(4) = max{OS ( 2)+ V(1 ))

20. Want to find V(10)
(V) +V(-1)} =10

0.
0.5 (V(1)+V(0)) } =20

UlUl
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nalyzing our game

V(x) = max[E[Reward] if round starts with x toothpicks

e V(—1)=V(0)=0, V(1) =V(2) =20. Want to find V(10)
e V(3) =max{0.5- (V(l)+V(0)),0.5-(V(0)+V(—1))}:10
e V(4)=max {0.5- (V(2)+V(1)),0.5-(V(1)+V(0))} =20
e V(5)=max {0.5- (V(3)+V(2)),0.5- (V(2)+V(1))} =20
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nalyzing our game

V(x) = max[E[Reward] if round starts with x toothpicks

e V(=1)=V(0)=0, V(1) =V(2) =20. Want to find V(10)
e V(3)=max{0.5- (V(1)+V(0)),0.5-(V(0)+V(-1))} =10
e V(4)=max {0.5- (V(2)+V(1)),0.5-(V(1)+V(0))} =20
e V(5)=max {0.5- (V(3)+V(2)),0.5- (V(2)+V(1))} =20
e V(6)=max{0.5-(V(4)+V(3)),05-(V(3)+V(2))} =15
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Analyzing our game

max [E[Reward] if round starts with x toothpicks

V(x)
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Analyzing our game

max [E[Reward] if round starts with x toothpicks

V(x)
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city-based RM
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city-based RM

= S O n O o~ A 3
= a8 —=aa - 3
N~— ..
N T L L | A | | 5
T A P s A — =
wn IMI)\I/\I/)\I/)\) ™ 3
~ .|_\|/\l/\l/\l/\l/\l/6 G— s
o © S = a3 n 1S)
—— (((((((V
8 28>0 2
Sle + FF+ L 2o
o S —~ —~ —~ —~ —~ —~ — I~ = —
S T o - o0 5 vn © — =)
= >SS S S S S
N N e e N e e tm
£ 9 . A 2
= N NN g S o
= | © © © o © S © - o
> lles oo o s o P e
+ R T T e T T e c
- AN~~~ =~ = OX
T — O —~— N o0 < n o — 8 es
ﬁ V(((((((V =
= __VVVVVVVIT ¢ c
e _+++++++ L 3%
> — Y~~~ ~—~ —~ —~ —~ 0 MS
o) — = AN N <t N O >~ — >
- V(((((((V ..a
o S S S S SSS & =
= 0..((((((( = =
— .. . T T TG =
T vy nnn S g
g O O O©C O O O O —~ — =
= O ©
G- - - T T £
E > & 8 &8 8 8 8§ & € o
m | 8EE8EEE&8T i
e | | | | [ O
g

N N S~

oV
oV
oV
oV
oV
oV
oV
oV
oV

V(x)

Analyzing our game

<
)
=
=
O
o
o



(S )

tochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: max.«actions” Ex [f(a,X)]
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tochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: max.«actions” Ex [f(a,X)]
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tochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: max.«actions” Ex [f(a,X)]
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tochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: max.«actions” Ex [f(a,X)]

I ¢aw \LaZ(ahXO I
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(S )

tochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: max.«actions” Ex [f(a,X)]

| ¢aw \LaZ(ahXO |
[ wa sz |
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(S )

tochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: max.«actions” Ex [f(a,X)]

law iaz(aw-x1) laT(a1 ..... ar 1, Xq,.. X1.1)
I |

I T T |
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(S )

tochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: max.«actions” Ex [f(a,X)]

| ¢31 \Laz(ahxﬂ ...¢3T(aw ----- ar, Xy XT71)|
BT e
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tochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: max.«actions” Ex [f(a,X)]

| ¢31 \Laz(ahxﬂ ...¢3T(aw ----- ar, Xy XT71)|
BT e

e State: S - summary of history
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(S )

tochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: max.«actions” Ex [f(a,X)]

| ¢31 \LaZ(ahXﬂ ...¢3T(aw ----- ar, Xy XT71)|
BT e

e State: S - summary of history

e Value function: V(-) - ‘value-to-go’ for given state)
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(S )

tochastic) Dynamic Programming

General solution paradigm for sequential decision making
Problem: max.«actions” Ex [f(a,X)]

| ¢31 \LaZ(ahXﬂ ...¢3T(aw ----- ar, Xy XT71)|
BT e

e State: S - summary of history

e Value function: V(-) - ‘value-to-go’ for given state)

e Bellman Equation (or DP equation):

V(S,) = max {R,(S,,a,)+V<St+l(Szaat>>}

a;:actions
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