

ORIE 4154 - Pricing and Market Design

Module 1: Capacity-based Revenue Management (Two-stage capacity allocation, and Littlewood's rule)

Instructor: Sid Banerjee, ORIE

Cornell University

Here's the Story...

- Until 1978, US airline industry was heavily regulated
 - US Airline Deregulation Act can in 1978
 - Price controls lifted
 - Free entry and exit from markets
- This led to the rise of new low-cost carriers
 - They provide bare-bone service, passengers paying for meals and all luggage handling, non-union employees
 - Their service structure allow them to offer low fares
 - One such carrier was People Express, started in 1981

What Happened to Major Airlines

- Major airlines were heavily affected, especially by the loss of discretionary leisure travelers
- Dilemma faced by American Airlines
 - If it matched People Express' fares, it can retain customers but not cover cost
 - If it does not, then it would lose customers

American Airlines' Solution

- Bob Crandall, VP of Marketing at AA then, recognized the following key facts
 - Many AA flights departed with empty seats
 - Marginal cost of using these seats was very small
 - AA could use these "surplus seats" to compete on cost

But how?

- Create new restricted, discounted fares called "Super Saver" and "Ultimate Super Saver" fares
 - Must book at least 2 weeks prior to departure and stay at destination over a Saturday night
 - Passengers not meeting this restriction are charged a higher fare
 - Restrict number of discount seats sold on each flight to save seats for full-fare passengers book late
 - DINAMO Dynamic Inventory Allocation and Maintenance Optimizer
- People Express allowed every seat to be sold at a low fare!

Results of the New Strategy

- AMR shares initially plunged on announcement of "Ultimate Super Saver" fares Jan. 1985
 - Analysts thought it was the start of a price war
 - "American cannot operate profitably at these fares"
- DINAMO proved to be surprisingly effective
 - AA total revenues rose
 - Competitors suffered: e.g. People Express

1985 \$160M loss

- 1986 Bankruptcy, sold to Continental

Want to maximize revenue from selling multiple copies of a single resource (e.g., C seats on a single flight)

- Buyer behavior:
 - (Dynamics) Buyers arrive sequentially to the market
 - (Choice) Each buyer wants either a discount-fare (i.e., low price) ticket or a full-fare (i.e., high-price) ticket

- Buyer behavior:
 - (Dynamics) Buyers arrive sequentially to the market
 - (Choice) Each buyer wants either a discount-fare (i.e., low price) ticket or a full-fare (i.e., high-price) ticket
- Seller constraints:
 - (Capacity) Has C identical units (seats) to sell
 - (Prices) Prices fixed to p_h (full-fare) and p_l (discount fare), with $p_h > p_l$
 - (Control) Can choose how many discount-fare and full-fare tickets to sell

- Buyer behavior:
 - (Dynamics) Buyers arrive sequentially to the market
 - (Choice) Each buyer wants either a discount-fare (i.e., low price) ticket or a full-fare (i.e., high-price) ticket
- Seller constraints:
 - (Capacity) Has C identical units (seats) to sell
 - (Prices) Prices fixed to p_h (full-fare) and p_l (discount fare), with $p_h > p_l$
 - (Control) Can choose how many discount-fare and full-fare tickets to sell
- Information structure:
 - (Dynamics) All discount-fare customers arrive before full fare customers
 - (Demand Distributions) Demand for full-fare tickets is $D_h \sim F_h$, discount fare tickets is $D_l \sim F_j$

In our first lecture, we considered a single customer with (unknown) value V for an item, and we charge a single price p

- Note: The best achievable revenue is V
- Customer segmentation: use pricing to get revenue closer to V

In our first lecture, we considered a single customer with (unknown) value V for an item, and we charge a single price p

- Note: The best achievable revenue is V
- Customer segmentation: use pricing to get revenue closer to \boldsymbol{V}

There are three high-level ways of achieving this:

First-degree (Complete discrimination): 'learn' each buyers' value, and charge p = V (e.g., negotiations/haggling)

In our first lecture, we considered a single customer with (unknown) value V for an item, and we charge a single price p

- Note: The best achievable revenue is V
- Customer segmentation: use pricing to get revenue closer to \boldsymbol{V}

There are three high-level ways of achieving this:

First-degree (Complete discrimination): 'learn' each buyers' value, and charge p = V (e.g., negotiations/haggling)

Third-degree (Direct segmentation): use some 'feature' to segment buyers into classes, and charge different price to each class (e.g., student discounts)

In our first lecture, we considered a single customer with (unknown) value V for an item, and we charge a single price p

- Note: The best achievable revenue is V
- Customer segmentation: use pricing to get revenue closer to V

There are three high-level ways of achieving this:

First-degree (Complete discrimination): 'learn' each buyers' value, and charge p = V (e.g., negotiations/haggling)

Third-degree (Direct segmentation): use some 'feature' to segment buyers into classes, and charge different price to each class (e.g., student discounts)

Second-degree (Indirect segmentation): Rely on some proxy to offer a 'choice' of products (e.g., bulk discounts, coupons)

In our first lecture, we considered a single customer with (unknown) value V for an item, and we charge a single price p

- Note: The best achievable revenue is V
- Customer segmentation: use pricing to get revenue closer to V

There are three high-level ways of achieving this:

First-degree (Complete discrimination): 'learn' each buyers' value, and charge p = V (e.g., negotiations/haggling)

Third-degree (Direct segmentation): use some 'feature' to segment buyers into classes, and charge different price to each class (e.g., student discounts)

Second-degree (Indirect segmentation): Rely on some proxy to offer a 'choice' of products (e.g., bulk discounts, coupons)

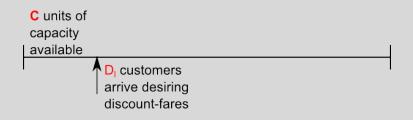
Profits and information requirements increase going up the list

Single-resource two-stage capacity allocation

Timeline of optimization problem

C units of capacity available

Timeline of optimization problem



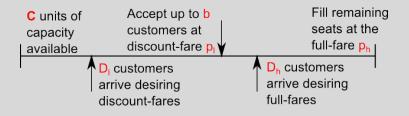
⁹/15

C units of	Accept up to b	
capacity	customers at	
available	discount-fare <mark>p</mark>	(
D _I customers arrive desiring discount-fares		

Single-resource two-stage capacity allocation

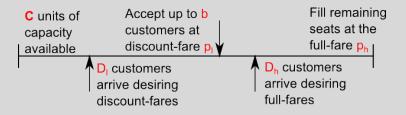
C units of capacity available	Accept up to <mark>b</mark> customers at discount-fare p _l ▼	1
	D _I customers arrive desiring discount-fares	 D_h customers arrive desiring full-fares

Single-resource two-stage capacity allocation



Single-resource two-stage capacity allocation

Timeline of optimization problem

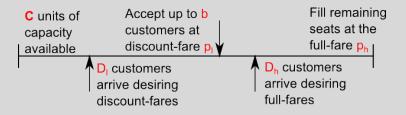


Inputs: prices p_{ℓ}, p_h , demand distributions F_{ℓ}, F_h Control variable: Booking limit *b* for discount-fare seats Revenue (as a function of *b*, D_{ℓ} and D_h):

 $R(b, D_\ell, D_h) = ?$

Single-resource two-stage capacity allocation

Timeline of optimization problem

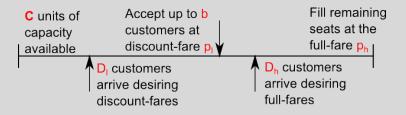


Inputs: prices p_{ℓ}, p_h , demand distributions F_{ℓ}, F_h Control variable: Booking limit *b* for discount-fare seats Revenue (as a function of *b*, D_{ℓ} and D_h):

 $R(b, D_{\ell}, D_{h}) = p_{\ell} \min\{b, D_{\ell}\} + p_{h} \min\{D_{h}, \max\{C - b, C - D_{\ell}\}\}$

Single-resource two-stage capacity allocation

Timeline of optimization problem



Inputs: prices p_{ℓ}, p_h , demand distributions F_{ℓ}, F_h **Control variable**: Booking limit *b* for discount-fare seats **Revenue** (as a function of *b*, D_{ℓ} and D_h):

 $R(b, D_{\ell}, D_{h}) = p_{\ell} \min\{b, D_{\ell}\} + p_{h} \min\{D_{h}, \max\{C - b, C - D_{\ell}\}\}$

Aim: Choose $b^* = \arg \max_{b \in [0,C]} \mathbb{E}[R(b, D_{\ell}, D_h)]$

Heuristic derivation of Littlewood's rule

The problem

 $R(b, D_{\ell}, D_{h}) = p_{\ell} \min\{b, D_{\ell}\} + p_{h} \min\{D_{h}, \max\{C - b, C - D_{\ell}\}\}$

Aim: Choose $b^* = \arg \max_{b \in [0,C]} \mathbb{E}[R(b, D_{\ell}, D_h)]$

- Equivalently, can choose opt protection level $y^* = C - b^*$

Marginal-revenue heuristic: Suppose we have y units left, and a discount-fare customer arrives

Heuristic derivation of Littlewood's rule

The problem

 $R(b, D_{\ell}, D_{h}) = p_{\ell} \min\{b, D_{\ell}\} + p_{h} \min\{D_{h}, \max\{C - b, C - D_{\ell}\}\}$

Aim: Choose $b^* = \arg \max_{b \in [0,C]} \mathbb{E}[R(b, D_{\ell}, D_h)]$

- Equivalently, can choose opt protection level $y^* = C - b^*$

Marginal-revenue heuristic: Suppose we have y units left, and a discount-fare customer arrives

- If we accept, then $\Delta R = p_\ell$

Heuristic derivation of Littlewood's rule

The problem

 $R(b, D_{\ell}, D_{h}) = p_{\ell} \min\{b, D_{\ell}\} + p_{h} \min\{D_{h}, \max\{C - b, C - D_{\ell}\}\}$

Aim: Choose $b^* = \arg \max_{b \in [0,C]} \mathbb{E}[R(b, D_{\ell}, D_h)]$

- Equivalently, can choose opt protection level $y^* = C - b^*$

Marginal-revenue heuristic: Suppose we have y units left, and a discount-fare customer arrives

- If we accept, then $\Delta R = p_\ell$
- If we reject, then $\Delta R = p_h \mathbb{P}[D_h \ge y]$

Heuristic derivation of Littlewood's rule

The problem

 $R(b, D_{\ell}, D_{h}) = p_{\ell} \min\{b, D_{\ell}\} + p_{h} \min\{D_{h}, \max\{C - b, C - D_{\ell}\}\}$

Aim: Choose $b^* = \arg \max_{b \in [0,C]} \mathbb{E}[R(b, D_{\ell}, D_h)]$

- Equivalently, can choose opt protection level $y^* = C - b^*$

Marginal-revenue heuristic: Suppose we have y units left, and a discount-fare customer arrives

- If we accept, then $\Delta R = p_\ell$
- If we reject, then $\Delta R = p_h \mathbb{P}[D_h \geq y]$

Thus, optimal protection level $y^* = \max_{y \in \mathbb{N}} \left\{ \mathbb{P}[D_h \ge y] > \frac{p_\ell}{p_h} \right\}$

Single-resource two-stage capacity allocation Formal derivation 1: Continuous RV

$$R^* = \max_{b \in [0,C]} \mathbb{E} \left| p_{\ell} \min\{b, D_{\ell}\} + p_h \min\{D_h, \max\{C - b, C - D_{\ell}\} \right|$$

- Assume D_h, D_ℓ are continuous, b can be fractional

Single-resource two-stage capacity allocation Formal derivation 1: Continuous RV

 $R^* = \max_{b \in [0,C]} \mathbb{E} \left[p_{\ell} \min\{b, D_{\ell}\} + p_h \min\{D_h, \max\{C-b, C-D_{\ell}\}\} \right]$ - Assume D_h, D_{ℓ} are continuous, b can be fractional

 $\mathbb{E}[R(b, D_{\ell}, D_{h})] = p_{\ell} \mathbb{E}\left[\min\{b, D_{\ell}\}\right] + p_{h} \mathbb{E}\left[\min\{D_{h}, \max\{C-b, C-D_{\ell}\}\}\right]$ (By linearity of expectation)

Single-resource two-stage capacity allocation Formal derivation 1: Continuous RV

$$R^* = \max_{b \in [0,C]} \mathbb{E} \Big[p_{\ell} \min\{b, D_{\ell}\} + p_h \min\{D_h, \max\{C-b, C-D_{\ell}\} \Big]$$

- Assume D_h, D_{ℓ} are continuous, b can be fractional

 $\mathbb{E}[R(b, D_{\ell}, D_{h})] = p_{\ell} \mathbb{E}\left[\min\{b, D_{\ell}\}\right] + p_{h} \mathbb{E}\left[\min\{D_{h}, \max\{C-b, C-D_{\ell}\}\}\right]$ (By linearity of expectation) $= p_{\ell} \cdot \left(\int_{-\infty}^{b} x \cdot f_{\ell}(x) dx + \int_{b}^{\infty} b \cdot f_{\ell}(x) dx\right) + \dots$

Single-resource two-stage capacity allocation Formal derivation 1: Continuous RV

$$R^* = \max_{b \in [0,C]} \mathbb{E} \left[p_{\ell} \min\{b, D_{\ell}\} + p_h \min\{D_h, \max\{C-b, C-D_{\ell}\}\} \right]$$

- Assume D_h, D_{ℓ} are continuous, b can be fractional

 $\mathbb{E}[R(b, D_{\ell}, D_{h})] = p_{\ell} \mathbb{E}\left[\min\{b, D_{\ell}\}\right] + p_{h} \mathbb{E}\left[\min\{D_{h}, \max\{C-b, C-D_{\ell}\}\}\right]$ (By linearity of expectation) $= p_{\ell} \cdot \left(\int_{-\infty}^{b} x \cdot f_{\ell}(x) dx + \int_{b}^{\infty} b \cdot f_{\ell}(x) dx\right) + \dots$ $p_{h} \cdot \left(\int_{-\infty}^{b} \mathbb{E}[\min\{C-x, D_{h}\}] \cdot f_{\ell}(x) dx + \dots$ $\int_{b}^{\infty} \mathbb{E}[\min\{C-b, D_{h}\}] \cdot f_{\ell}(x) dx\right)$

Thus we want to choose b to maximize:

$$r(b) = \mathbb{E}[R(b, D_{\ell}, D_{h})] = p_{\ell} \cdot (L_{1}(b) + L_{2}(b)) + p_{h} \cdot (H_{1}(b) + H_{2}(b))$$

Where

$$L_1(b) = \int_{-\infty}^{b} x \cdot f_{\ell}(x) dx$$
$$L_2(b) = \int_{b}^{\infty} b \cdot f_{\ell}(x) dx$$
$$H_1(b) = \int_{-\infty}^{b} \mathbb{E}[\min\{C - x, D_h\}] \cdot f_{\ell}(x) dx$$
$$H_2(b) = \int_{b}^{\infty} \mathbb{E}[\min\{C - b, D_h\}] \cdot f_{\ell}(x) dx$$

We now need to check the first-order condition $\frac{dr(b)}{db} = 0$

Aside: Leibniz rule of integration

Let f(x,t) be such the partial derivative w.r.t. t exists and is continuous. Then:

$$\frac{d}{dx} \left[\int_{A(x)}^{B(x)} f(x,t) dt \right] = \int_{A(x)}^{B(x)} \frac{\partial f(x,t)}{\partial x} dt + \dots$$
$$f(x,B(x)) \frac{dB(x)}{dx} - f(x,A(x)) \frac{dA(x)}{dx}$$

Aside: Leibniz rule of integration

Let f(x,t) be such the partial derivative w.r.t. t exists and is continuous. Then:

$$\frac{d}{dx} \left[\int_{A(x)}^{B(x)} f(x,t) dt \right] = \int_{A(x)}^{B(x)} \frac{\partial f(x,t)}{\partial x} dt + \dots$$
$$f(x,B(x)) \frac{dB(x)}{dx} - f(x,A(x)) \frac{dA(x)}{dx}$$

As an example, consider $L_2(b) = \int_b^\infty b \cdot f_\ell(x) dx$:

$$\frac{dL_2(b)}{db} = \int_b^\infty \frac{\partial bf_\ell(x)}{\partial b} dx - bf_\ell(x) \Big|_{x=b} \cdot \frac{db}{db} = \int_b^\infty f_\ell(x) dx - bf_\ell(b)$$

Single-resource two-stage capacity allocation Formal derivation 1: Continuous RV

$$\frac{dr(b)}{db} = p_{\ell} \cdot \left(\frac{dL_1(b)}{db} + \frac{dL_2(b)}{db}\right) + p_h \cdot \left(\frac{dH_1(b)}{db} + \frac{dH_2(b)}{db}\right)$$

where we have

$$L_1(b) = \int_{-\infty}^{b} x \cdot f_{\ell}(x) dx, L_2(b) = \int_{b}^{\infty} b \cdot f_{\ell}(x) dx$$

$$H_1(b) = \int_{-\infty}^{b} \mathbb{E}[\min\{C - x, D_h\}] \cdot f_{\ell}(x) dx$$

$$H_2(b) = \int_{b}^{\infty} \mathbb{E}[\min\{C - b, D_h\}] \cdot f_{\ell}(x) dx$$

Single-resource two-stage capacity allocation Formal derivation 1: Continuous RV

$$\frac{dr(b)}{db} = p_{\ell} \cdot \left(\frac{dL_1(b)}{db} + \frac{dL_2(b)}{db}\right) + p_h \cdot \left(\frac{dH_1(b)}{db} + \frac{dH_2(b)}{db}\right)$$

where we have $L_1(b) = \int_{-\infty}^{b} x \cdot f_{\ell}(x) dx , L_2(b) = \int_{b}^{\infty} b \cdot f_{\ell}(x) dx$ $H_1(b) = \int_{-\infty}^{b} \mathbb{E}[\min\{C - x, D_h\}] \cdot f_{\ell}(x) dx$ $H_2(b) = \int_{b}^{\infty} \mathbb{E}[\min\{C - b, D_h\}] \cdot f_{\ell}(x) dx$

Differentiating we have (check these for yourself):

$$\frac{dL_1(b)}{db} = bf_\ell(b) , \ \frac{dL_2(b)}{db} = \mathbb{P}[D_\ell \ge b] - bf_\ell(b)$$

Single-resource two-stage capacity allocation Formal derivation 1: Continuous RV

$$\frac{dr(b)}{db} = p_{\ell} \cdot \left(\frac{dL_1(b)}{db} + \frac{dL_2(b)}{db}\right) + p_h \cdot \left(\frac{dH_1(b)}{db} + \frac{dH_2(b)}{db}\right)$$

where we have

$$L_1(b) = \int_{-\infty}^{b} x \cdot f_{\ell}(x) dx , L_2(b) = \int_{b}^{\infty} b \cdot f_{\ell}(x) dx$$

$$H_1(b) = \int_{-\infty}^{b} \mathbb{E}[\min\{C - x, D_h\}] \cdot f_{\ell}(x) dx$$

$$H_2(b) = \int_{b}^{\infty} \mathbb{E}[\min\{C - b, D_h\}] \cdot f_{\ell}(x) dx$$

• Differentiating we have (check these for yourself):

$$\begin{aligned} \frac{dL_1(b)}{db} &= bf_\ell(b) , \ \frac{dL_2(b)}{db} = \mathbb{P}[D_\ell \ge b] - bf_\ell(b) \\ \frac{dH_1(b)}{db} &= \mathbb{E}[\min\{C - b, D_h\}]f_\ell(b) \\ \frac{dH_2(b)}{db} &= -\mathbb{E}[\min\{C - b, D_h\}]f_\ell(b) + \frac{d\mathbb{E}[\min\{C - b, D_h\}]}{db} \int_b^\infty f_\ell(x)dx \end{aligned}$$

• Combining all terms, we have

$$\frac{dr(b)}{db} = p_{\ell} \mathbb{P}[D_{\ell} \ge b] + p_h \left(\frac{d\mathbb{E}[\min\{C-b, D_h\}]}{db}\right) \mathbb{P}[D_{\ell} \ge b]$$

Setting $\frac{dr(b)}{db} = 0$, we get $\frac{d\mathbb{E}[\min\{C-b,D_h\}]}{db} + \frac{p_\ell}{p_h} = 0$.

• Combining all terms, we have

$$\frac{dr(b)}{db} = p_{\ell} \mathbb{P}[D_{\ell} \ge b] + p_h \left(\frac{d\mathbb{E}[\min\{C-b, D_h\}]}{db}\right) \mathbb{P}[D_{\ell} \ge b]$$

Setting $\frac{dr(b)}{db} = 0$, we get $\frac{d\mathbb{E}[\min\{C-b,D_h\}]}{db} + \frac{p_\ell}{p_h} = 0$. • Finally, we can again use the Leibniz rule to simplify the LHS $\frac{d\mathbb{E}[\min\{C-b,D_h\}]}{db} = \frac{d}{db} \left(\int_{-\infty}^{C-b} xf_h(x)dx + \int_{C-b}^{\infty} (C-b)f_h(x)dx \right)$ $= -(C-b)f_h(C-b) + (C-b)f_h(C-b) - \mathbb{P}[D_h \ge C-b]$

• Combining all terms, we have

$$\frac{dr(b)}{db} = p_{\ell} \mathbb{P}[D_{\ell} \ge b] + p_h \left(\frac{d\mathbb{E}[\min\{C-b, D_h\}]}{db}\right) \mathbb{P}[D_{\ell} \ge b]$$

Setting
$$\frac{dr(b)}{db} = 0$$
, we get $\frac{d\mathbb{E}[\min\{C-b,D_h\}]}{db} + \frac{p_\ell}{p_h} = 0$.
• Finally, we can again use the Leibniz rule to simplify the LHS
 $\frac{d\mathbb{E}[\min\{C-b,D_h\}]}{db} = \frac{d}{db} \left(\int_{-\infty}^{C-b} xf_h(x)dx + \int_{C-b}^{\infty} (C-b)f_h(x)dx \right)$
 $= -(C-b)f_h(C-b) + (C-b)f_h(C-b) - \mathbb{P}[D_h \ge C-b]$

Thus, the optimal b^* satisfies: $\mathbb{P}[D_h \ge c - b^*] = \frac{p_\ell}{p_h}$, and hence:

$$C - b^* = y^* = F_h^{-1} \left(1 - \frac{p_\ell}{p_h} \right)$$