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ORIE 4154 - Pricing and Market Design

Module 1: Capacity-based Revenue Management
(Two-stage capacity allocation, and Littlewood’s rule)

Instructor: Sid Banerjee, ORIE
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RM in the Airline Industry

Courtesy: Huseyin Topaloglu
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Problem: Single-resource two-stage capacity allocation

Want to maximize revenue from selling multiple copies of a single
resource (e.g., C seats on a single flight)

• Buyer behavior:
- (Dynamics) Buyers arrive sequentially to the market
- (Choice) Each buyer wants either a discount-fare (i.e.,
low price) ticket or a full-fare (i.e., high-price) ticket

• Seller constraints:
- (Capacity) Has C identical units (seats) to sell
- (Prices) Prices fixed to ph (full-fare) and pl (discount
fare), with ph > pl

- (Control) Can choose how many discount-fare and
full-fare tickets to sell

• Information structure:
- (Dynamics) All discount-fare customers arrive before full
fare customers

- (Demand Distributions) Demand for full-fare tickets is
Dh ∼ Fh, discount fare tickets is Dl ∼ Fj
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Aside: Customer Segmentation (Price Discrimination)

In our first lecture, we considered a single customer with
(unknown) value V for an item, and we charge a single price p

• Note: The best achievable revenue is V

• Customer segmentation: use pricing to get revenue closer to V

There are three high-level ways of achieving this:

First-degree (Complete discrimination): ‘learn’ each buyers’
value, and charge p =V (e.g., negotiations/haggling)
Third-degree (Direct segmentation): use some ‘feature’ to
segment buyers into classes, and charge different price to each
class (e.g., student discounts)
Second-degree (Indirect segmentation): Rely on some proxy
to offer a ‘choice’ of products (e.g., bulk discounts, coupons)

Profits and information requirements increase going up the list
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Single-resource two-stage capacity allocation
Timeline of optimization problem

Inputs: prices p`, ph, demand distributions F̀ ,Fh
Control variable: Booking limit b for discount-fare seats
Revenue (as a function of b, D` and Dh):

R(b,D`,Dh) =

p` min{b,D`}+ ph min{Dh,max{C−b,C−D`}}

Aim: Choose b∗ = argmaxb∈[0,C]E[R(b,D`,Dh)]
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Single-resource two-stage capacity allocation
Heuristic derivation of Littlewood’s rule

The problem
R(b,D`,Dh) = p` min{b,D`}+ ph min{Dh,max{C−b,C−D`}}

Aim: Choose b∗ = argmaxb∈[0,C]E[R(b,D`,Dh)]

- Equivalently, can choose opt protection level y∗ =C−b∗

Marginal-revenue heuristic: Suppose we have y units left, and a
discount-fare customer arrives

- If we accept, then ∆R = p`
- If we reject, then ∆R = phP[Dh ≥ y]

Thus, optimal protection level y∗ = maxy∈N

{
P[Dh ≥ y]> p`

ph

}
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Single-resource two-stage capacity allocation
Formal derivation 1: Continuous RV

R∗ = maxb∈[0,C]E
[

p` min{b,D`}+ ph min{Dh,max{C−b,C−D`}}
]

- Assume Dh,D` are continuous, b can be fractional

E[R(b,D`,Dh)] = p`E [min{b,D`}]+ phE [min{Dh,max{C−b,C−D`}}]
(By linearity of expectation)

= p` ·
(∫ b

−∞

x · f`(x)dx+
∫

∞

b
b · f`(x)dx

)
+ . . .

ph ·

(∫ b

−∞

E[min{C− x,Dh}] · f`(x)dx + . . .

∫
∞

b
E[min{C−b,Dh}] · f`(x)dx

)
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Single-resource two-stage capacity allocation
Formal derivation 1: Continuous RV

Thus we want to choose b to maximize:

r(b) = E[R(b,D`,Dh)] = p` · (L1(b)+L2(b))+ ph · (H1(b)+H2(b))

Where

L1(b) =
∫ b

−∞

x · f`(x)dx

L2(b) =
∫

∞

b
b · f`(x)dx

H1(b) =
∫ b

−∞

E[min{C− x,Dh}] · f`(x)dx

H2(b) =
∫

∞

b
E[min{C−b,Dh}] · f`(x)dx

We now need to check the first-order condition dr(b)
db = 0
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Aside: Leibniz rule of integration

Let f (x, t) be such the partial derivative w.r.t. t exists and is
continuous. Then:

d
dx

[∫ B(x)

A(x)
f (x, t)dt

]
=
∫ B(x)

A(x)

∂ f (x, t)
∂x

dt + . . .

f (x,B(x))
dB(x)

dx
− f (x,A(x))

dA(x)
dx

As an example, consider L2(b) =
∫

∞

b b · f`(x)dx:

dL2(b)
db

=
∫

∞

b

∂b f`(x)
∂b

dx−b f`(x)
∣∣∣
x=b
· db

db
=
∫

∞

b
f`(x)dx−b f`(b)
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Single-resource two-stage capacity allocation
Formal derivation 1: Continuous RV

dr(b)
db = p` ·

(
dL1(b)

db + dL2(b)
db

)
+ ph ·

(
dH1(b)

db + dH2(b)
db

)
where we have
L1(b) =

∫ b
−∞

x · f`(x)dx , L2(b) =
∫

∞

b b · f`(x)dx
H1(b) =

∫ b
−∞

E[min{C− x,Dh}] · f`(x)dx
H2(b) =

∫
∞

b E[min{C−b,Dh}] · f`(x)dx

• Differentiating we have (check these for yourself):

dL1(b)
db

= b f`(b) ,
dL2(b)

db
= P[D` ≥ b]−b f`(b)

dH1(b)
db

= E[min{C−b,Dh}] f`(b)

dH2(b)
db

=−E[min{C−b,Dh}] f`(b)+
dE[min{C−b,Dh}]

db

∫
∞

b
f`(x)dx
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Single-resource two-stage capacity allocation
Formal derivation 1: Continuous RV

• Combining all terms, we have
dr(b)

db
= p`P[D` ≥ b]+ ph

(
dE[min{C−b,Dh}]

db

)
P[D` ≥ b]

Setting dr(b)
db = 0, we get dE[min{C−b,Dh}]

db + p`
ph

= 0 .

• Finally, we can again use the Leibniz rule to simplify the LHS
dE[min{C−b,Dh}]

db
=

d
db

(∫ C−b

−∞

x fh(x)dx+
∫

∞

C−b
(C−b) fh(x)dx

)
=−(C−b) fh(C−b)+(C−b) fh(C−b)−P[Dh ≥C−b]

Thus, the optimal b∗ satisfies: P[Dh ≥ c−b∗] = p`
ph
, and hence:

C−b∗ = y∗ = F−1
h

(
1− p`

ph

)
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Thus, the optimal b∗ satisfies: P[Dh ≥ c−b∗] = p`
ph
, and hence:

C−b∗ = y∗ = F−1
h

(
1− p`

ph

)
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• Combining all terms, we have
dr(b)

db
= p`P[D` ≥ b]+ ph

(
dE[min{C−b,Dh}]

db

)
P[D` ≥ b]

Setting dr(b)
db = 0, we get dE[min{C−b,Dh}]

db + p`
ph

= 0 .
• Finally, we can again use the Leibniz rule to simplify the LHS
dE[min{C−b,Dh}]

db
=

d
db

(∫ C−b

−∞

x fh(x)dx+
∫

∞

C−b
(C−b) fh(x)dx

)
=−(C−b) fh(C−b)+(C−b) fh(C−b)−P[Dh ≥C−b]

Thus, the optimal b∗ satisfies: P[Dh ≥ c−b∗] = p`
ph
, and hence:

C−b∗ = y∗ = F−1
h

(
1− p`

ph

)
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