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Problem 1: Choice models and assortment optimization

Part (a)

Consider a MNL choice model over five products with prices (p1, . . . , p5) = (7, 6, 4, 3, 2) and pref-
erence weights (i.e., MNL parameters) (v1, . . . , v5) = (3, 5, 6, 4, 5). The preference weight of the
no-purchase alternative is v0 = 10. Compute the optimal expected-revenue assortment.

Part (b)

Next, consider a mixed-MNL choice model, wherein we have two consumer types and three products.
The probability of observing each consumer type is (α1, α2) = (0.5, 0.5). The product prices are
(p1, p2, p3) = (8, 4, 3). A consumer of type 1 has preference weights (v1, v21, v31) = (5, 20, 0), and
a consumer of type 2 has preference weights (v12, v2, v32) = (1/5, 10, 10); the preference weight of
the no-purchase alternative is 1 for both types.

i. First, find the optimal assortments S∗1 , , S
∗
2 for each individual type, and compute the expected

revenue of S∗1 and S∗2 for the mixed-MNL model.

ii. Next, consider the assortment {1, 3}, and show that this achieves a higher revenue under
the mixed-MNL model than the two assortments in the previous part. (In fact, {1, 3} is the
optimal assortment, but you do not need to show that).

Note: To maximize the expected revenue over the two consumer types, we need to offer product 3;
however, this product is not offered when we want to maximize the expected revenue from either
one of the consumer types individually.

Problem 2: Pivot rules and procurement auctions

Consider a single-item auction setting, where each bidder i has a private value vi. In class, we
studied the Vickrey (or second-price) auction for such settings, and saw that it has two properties:
i. incentive compatibility (DSIC), i.e., ui(bi,b−i) ≤ ui(vi,b−i), and ii. individual rationality, i.e.,
ui(vi,b−i) ≥ 0. We now will see a more general mechanism that has the DSIC property.

Given bids b, let i∗ = arg maxi{bi}, and consider the mechanism (x,p), with allocation rule
xi = 1{i=i∗} (i.e., award item to highest bidder), and payment rule pj = 0 for all j 6= i∗, and
pi∗ = fi∗(b−i∗), where fi(b−i∗) is some function which only depends on the bids of other bidders
(and any other publicly-known constant). The term fi∗(b−i∗) is sometimes referred to as a pivot
rule.

Part (a)

Argue that fi(b−i) = maxj 6=i{bj} always ensures individual rationality in any single-item auction
setting. This gives us the Vickrey auction (and more generally, the pivot rule is a special case of
the so-called Clark pivot rule).
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Part (b)

Find the maximum pivot rule fi(b−i) that ensures individual rationality in the following settings:

i. Bidder i’s value vi is known to satisfy vi ∈ [vmin(i), vmax(i)], i.e., the maximum and minimum
values of each bidder’s valuations is public knowledge.

ii. There is a publicly-known constant δ such that any two bidders i and j, we have |vi− vj | ≥ δ
(i.e., any two bidders’ values are at least δ apart).

Part (c)

Argue that the pivot rule is dominant-strategy incentive compatible for the following choices of f

i. The function from (b) part i.

ii. The function from (b) part ii.

iii. fi(b−i) = maxj 6=i{bj}

Part (d)

Finally, consider a procurement auction, where you want to buy an item (or enter into a contract
for some work) from among a group of n sellers. Each seller has a private cost ci which is known to
lie in a (publicly-known) range [cmin(i), cmax(i)]. Consider a mechanism that collects bids from the
sellers, chooses the seller i∗ with the lowest bid, and then pays i∗ an amount pi∗(bi∗ ,b−i). What is
the minimum payment that you can offer such that the mechanism is DSIC and IR.
Hint: One way to view a cost is as a negative value vi < 0 for entering into a contract, and a
payment as a negative price pi ≤ 0. As in a single-item auction, each seller i has utility ui = vi−pi,
where ui = 0 for no-trade; the seller’s aim is to bid so as to maximize utility ui(bi,b−i).

Problem 3: Welfare maximization and externality pricing

Part (a)

Consider an arbitrary single-parameter environment, with feasible set X . Given values vi, the
welfare-maximizing allocation rule is x(v) = arg max(x1,...,xn)∈X

∑n
i=1 vixi. Prove that this alloca-

tion rule is monotone. You can assume for convenience that all values are distinct (or more generally,
that ties are broken in some deterministic and consistent way, for example, lexicographically.)

Part (b)

Next, consider feasible sets X that contain only 0− 1 vectors, i.e., each bidder either wins or loses.
Now, given any monotone allocation rule x(b), for any bidder i and other bids b−i, argue that the
Myerson payment rule can be written as:

p(bi,b−i) =

{
0 if xi(bi,b−i) = 0

b∗i (b−i) if xi(bi,b−i) = 1
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where b∗i (b−i) is bidder i’s critical bid, i.e., the lowest bid at which i gets a non-0 allocation.

Part (c)

For feasible sets X containing only 0 − 1 vectors, we can identify each feasible allocation with a
‘winning set’ of bidders. Assume further that the environment is ‘downward closed’, meaning that
subsets of a feasible set are again feasible. Prove that, when S∗ is the set of winning bidders and
i ∈ S∗, then is critical bid equals the difference between (i) the maximum surplus of a feasible set
that excludes i (you should assume there is at least one such set); and (ii) the surplus

∑
j∈S∗\{i} vj

of the bidders other than i in the chosen outcome S∗. Also, is this difference always nonnegative?
Note: In other words, a winning bidder pays its ‘externality’ – the welfare loss it imposes on others.

Part (d)

To see how to use the above result, consider the knapsack auction we discussed in class (for allocating
TV advertisements to ad slots). We want to choose ads to fill a slot of length at most 120 seconds.
Bidders have private values vi and public ad-lengths `i. In particular, consider a setting with 4
bidders {a, b, c, d}, with private values (va, vb, vc, vd) and lengths (60s, 40s, 40s, 40s). Now suppose
all bidders truthfully report their bids, and the auctioneer finds that the optimal allocation is to
choose ads b, c and d (note that this is feasible). Use part c to compute the Myerson payments for
all the bidders.

Problem 4: The Myerson optimal-revenue auction

In this question, we will get some practice with the Myerson optimal-revenue auction.

Part (a)

Consider an auction with k identical goods, with at most one given to each bidder. There are
n bidders whose valuations are i.i.d. draws from a regular distribution F . Describe the optimal
auction in this case.

Part (b)

Next, consider a single-item auction with independent but non-identical values; in particular, as-
sume bidder is valuation is drawn from its own regular distribution Fi.

i. Give a formula for the winners payment in the optimal revenue auction, in terms of the
bidders virtual valuation functions.

ii. Show by example that, in an optimal auction, the highest bidder need not win, even if he has
a positive virtual valuation.

Hint: For the last part, a simple setting with two bidders with valuations from different uniform
distributions suffices.
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