
Greedy sensor selection: leveraging submodularity
Manohar Shamaiah Siddhartha Banerjee Haris Vikalo

The University of Texas at Austin

Electrical and Computer Engineering, 2501 Speedway, Austin, TX 78712-0240

I. ABSTRACT

We consider the problem of sensor selection in resource

constrained sensor networks. The fusion center selects a subset

of k sensors from an available pool of m sensors according

to the maximum a posteriori or the maximum likelihood rule.

We cast the sensor selection problem as the maximization of a

submodular function over uniform matroids, and demonstrate

that a greedy sensor selection algorithm achieves performance

within (1− 1

e
) of the optimal solution. The greedy algorithm

has a complexity of O(n3mk), where n is the dimension of

the measurement space. The complexity of the algorithm is

further reduced to O(n2mk) by exploiting certain structural

features of the problem. An application to the sensor selection

in linear dynamical systems where the fusion center employs

Kalman filtering for state estimation is considered. Simulation

results demonstrate the superior performance of the greedy

sensor selection algorithm over competing techniques based

on convex relaxation.

Index Terms: Submodular functions, Kalman filter

II. INTRODUCTION

Sensor networks have attracted much attention in recent

years [1], [2], [3]. A typical feature of such networks is

the presence of one or more fusion centers, which aggre-

gate the information from different sensors. Due to various

practical considerations, the sensors are generally resource

constrained, and hence their communication with the fusion

center is limited. To this end, the fusion center schedules

only a subset of the available sensors for transmission in each

time slot. Different performance metrics lead to various sensor

selection problem formulations. Regardless of the formulation,

however, sensor selection is essentially combinatorial in nature.

Hence finding the optimal solution is generally computationally

intensive, leading to a number of heuristics and approximate

algorithms.

In this paper, we consider the scenario where the fusion

center desires the maximum likelihood (ML) or maximum

a posteriori (MAP) estimate of the unknown vector. Only a

subset of the sensors which acquire the measurement is allowed

to transmit its measurement to the fusion center. Due to the

high complexity of obtaining the exact solution, Joshi and

Boyd [1] propose a heuristic approach to the problem based on

convex relaxation. However, the algorithm proposed in [1] has

no guarantees on the performance; moreover, its complexity

is cubic in the total number of available sensors, which is

prohibitive for large networks. In our work, we show that

certain structural properties of the sensor selection problem

allow recasting it as a maximization of submodular functions

over uniform matroids. This allows us to leverage the results of

Nemhauser and Wolsey [4], who show that for problems with

such a structure, a greedy algorithm results in an approximate

solution with a performance within a (1− 1

e
) of the optimal. In

addition to the performance guarantees, the greedy algorithm

is significantly more computationally efficient than the convex

relaxation based approach. In particular, the complexity of the

greedy algorithm is O(n3mk), i.e, it scales linearly with the

total number of sensors. We further exploit the structure in

the problem to obtain a simplified greedy algorithm with a

complexity of O(n2mk).

A related sensor selection problem arises in state estimation

of linear dynamical systems [5], [6]. There, the fusion center

employs Kalman filter for state estimation, and the sensor

selection problem is concerned with optimizing a metric related

to the error covariance matrix in the Kalman recursions.

Recently, convex optimization based heuristics were proposed

to solve this problem [5]. As an alternative, we employ the

aforementioned greedy algorithm and demonstrate that it sig-

nificantly outperforms the convex optimization based solution.

Moreover, by exploiting the connection between the proposed

algorithm and sequential processing implementation of Kalman

filter [7], we achieve significant complexity reduction. Interest-

ingly, the greedy algorithm has an intuitive interpretation as a

procedure which at each step chooses the set of observations

in the direction closest to the maximum error.

The paper is organized as follows. The system model and the

sensor selection problem formulation are given in Section III.

Section IV provides a brief overview of submodular functions

and uniform matroids and then presents our analytical and

simulation results. Sensor selection for estimation in linear dy-

namical system using Kalman filtering is presented in Section

V, followed by the simulation results. Finally, we conclude the

paper in Section VI.

III. SYSTEM MODEL AND SENSOR SELECTION PROBLEM

Consider the problem of estimating a vector x ∈ Rn from k
linear measurements, corrupted by additive noise. The k mea-

surements are to be selected from the set of m measurements,

each acquired at one of the sensors in a network. The ith

measurement is given by

yi = a′
ix + ni (1)

where ai denotes the ith measurement vector and ni represents

the zero-mean Gaussian noise with variance σ2. Following

[1], we assume that the fusion center knows the measurement

vectors ai.



A. Maximum a posteriori criterion

Suppose the prior density of x is N (0, Σx). The maximum

a posteriori probability (MAP) estimate of x is given by [8]

x̂MAP =
“

σ−2
X

i∈S

aia
′

i + Σ−1
x

”−1 X

i∈S

yiai, (2)

where S denotes the set of selected measurements. The esti-

mation error covariance matrix is given by

Σmap(S) =
“

σ−2
X

i∈S

aia
′

i + Σ−1
x

”−1

. (3)

An often used scalar measure of the quality of estimation is

based on the volume of η confidence ellipsoid or its mean

radius [8]. Both of these are functions of log det(Σmap(S)).

The sensor selection can then be posed as the problem of

selecting a subset of k ≥ n sensors from the set of m sensors,

such that the log volume (or the mean radius) of the confidence

ellipsoid is minimized. This can be expressed as the following

optimization problem,

max log det
“

σ−2
X

i∈S

aia
′

i + Σ−1
x

”

, (4)

subject to |S| = k.

where |S| denotes the cardinality of the set S.

By introducing binary variables zi ∈ {0, 1} to indicate the

membership of each sensor in the selected subset, (4) can be

written as

max log det
“

σ−2

m
X

i=1

ziaia
′

i + Σ−1
x

”

, (5)

subject to zi ∈ {0, 1},
m

X

i=1

zi = k.

The convex relaxation of the above optimization problem is

given by

max log det
“

σ−2

m
X

i=1

ziaia
′

i + Σ−1
x

”

, (6)

subject to 0 ≤ zi ≤ 1, i = 1, 2, . . . , m
m

X

i=1

zi = k

In [1], (6) was solved by reformulating it as a semi-definite

program (SDP). The solution to the SDP may take fractional

values, in which case some kind of sorting and rounding need

to be employed in order to obtain the desired solution. The

complexity of the SDP algorithm scales as O(m3).

B. Maximum-Likelihood criterion

The maximum-likelihood (ML) criterion leads to the esti-

mator of the form

x̂ML =
“

σ−2
X

i∈S

aia
′

i

”−1 X

i∈S

yiai, (7)

with the corresponding error covariance given by

Σml(S) = σ2
“

X

i∈S

aia
′

i

”−1

(8)

The corresponding sensor selection problem is formulated as

the following optimization,

max log det
“

m
X

i=1

ziaia
′

i

”

, (9)

subject to zi ∈ {0, 1}
m

X

i=1

zi = k.

Its convex relaxation leads to the following optimization,

max log det
“

X

i∈S

ziaia
′

i

”

, (10)

subject to 0 ≤ zi ≤ 1, i = 1, 2, . . . , m
m

X

i=1

zi = k.

Note that the ML estimation is as same as the MAP estimation

in the limit of Σx = υI, υ → ∞ (compare formulations (5)

and (9)). Hence we approximate the ML estimation as the

following optimization problem,

max log det
“

m
X

i=1

ziaia
′

i + εI
”

, (11)

subject to zi ∈ {0, 1},
m

X

i=1

zi = k,

where ε > 0 is chosen to be a very small constant. The reason

for this modification is that a non-zero ε, albeit very small,

ensures applicability of the submodular approach to solving

(11), which we describe next.

IV. GREEDY SENSOR SELECTION

A. Submodular function maximization over uniform matroid.

In this section we review definitions and results related to

submodular functions and matroids [9].

Definition 1 [Submodularity]: Let S be a finite set and 2S

denote power set. A set function f : 2S → R is said to be

submodular iff

∀A, B ⊆ S, f(A ∪B) + f(A ∩B) ≤ f(A) + f(B).

For finite set S this is equivalent to ∀A ⊆ B ⊆ S, ∀j ∈
S\B,

f(A + j)− f(A) ≥ f(B + j)− f(B) (12)

i.e., the function f satisfies the diminishing increments prop-

erty. The submodular function f is monotone if f(A) ≤
f(B), ∀A ⊆ B.

Definition 2 [Matroid]: A matroid is a pair M = (S; I) where

I ⊆ 2S and

1) ∀B ∈ I, A ⊂ B ⇒ A ∈ I
2) ∀A, B ∈ I, |A| < |B| ⇒ ∃x ∈ B\A, A + x ∈ I

A matroid is an abstraction of combinatorial objects, gen-

erating notion of linear independence in vector spaces. If m
denotes the cardinality of the set S (i.e., |S| = m), then for

any integer k ≤ m, we can define I = {J |J ⊆ S, |J | ≤ k};
M = (S; I) is called a uniform matroid Mm,k.



B. The greedy sensor selection algorithm

The optimization problem (4) is of the form

max{f(S)| |S| ≤ k}. If f(S) is a monotone submodular

function then (4) corresponds to maximization of a submodular

function over a uniform matroid constraint [9], [4]. For this

problem, it was shown in [4] that a greedy algorithm results in

a solution with the objective value within (1− 1

e
) of the optimal

value1. At each step the greedy algorithm choses the measure-

ment from the available measurements which maximizes the

objective when included with previously chosen measurements.

In the following lemma, we show that the objective function

of the optimization (4) is submodular and hence the greedy

algorithm (formalized as Algorithm 1) results in the guaranteed

(1− 1

e
) optimal solution.

Lemma 1: f(S) = log det
“

σ−2
X

i∈S

aia
′

i + Σ−1
x

”

is a mono-

tone submodular function, and hence the solution to (4) via

Algorithm 1 is (1− 1

e
) optimal. Moreover, the complexity of

Algorithm 1 is O(n3mk).

Proof: See Appendix.

In general, k = O(n), i.e., the number of sensors to

be selected is of the same order as the dimension of the

unknown vector, in which case the complexity of Algorithm

1 be is essentially O(n4m). If the number of the available

measurements m is very large compared to n (i.e., m >> n),

the complexity of Algorithm 1 is significantly lower than the

complexity of the convex optimization algorithm (the later is

O(m3)). We further reduce the complexity of Algorithm 1 by

noting that the step 2 in Algorithm 1 requires computation of

the determinant of a rank 1 matrix. This can be simplified as

follows. Let Ms = σ−2
X

i∈Ks

aia
′

i + Σ−1
x , then

max
j∈Ss

log det
“

Ms +aja
′

j

”

= max
j∈Ss

(a
′

jM
−1
s aj). (13)

Hence, we need to propagate (or store) only M−1
s , which is

obtained using the following recursion

M−1
s = M−1

s−1 −
M−1

s−1aks−1
a
′

ks−1
M−1

s−1

1 + a
′

ks−1
M−1

s−1aks−1

, (14)

where M−1

0 = Σx and aks−1
is the optimal vector chosen

by the greedy algorithm at step s − 1. This modification is

summarized as Algorithm 2.

The complexity of Algorithm 2 is O(n2mk). First, note that

the complexity of computing the quadratic form 13 is O(n2)
and there are O(m) such computations. Next, using 14, we

can compute M−1
s in O(n2) computations (as opposed to

O(n3) for direct matrix inversion). To see this, denote rs−1 =
M−1

s−1aks−1
, which implies that M−1

s−1aks−1
a′

ks−1
M−1

s−1 =
rs−1r

′
s−1, a product of rank 1 matrices. The complexity of

computing 14 is thus O(n2), and therefore of selecting each

sensor is O(n2m). Finally, there are k such iterations. Hence

the overall complexity of Algorithm 2 is O(n2mk).

C. Simulation results

In this section, we compare the performance of Algorithm

2 and the convex optimization based algorithm employed for

1This has been recently generalized to arbitrary matroid constraint[9]

Algorithm 1 Basic greedy algorithm

1. Initialization:

s = 1, Ks = {}, Ss = S
2. Determine greedily the next measurement:

ks=arg maxj∈Ss log det
“

σ−2
X

i∈Ks

aia
′

i+aja
′

j+Σ−1
x

”

3. Update the measurement set:

Ss+1 = Ss\ks, Ks+1 = Ks ∪ ks s← s + 1, go to

step 2 if s ≤ k.

Algorithm 2 Simplified greedy algorithm

1. Initialization:

s = 1, Ks = {}, Ss = S, Ms = Σ−1
x

2. Determine greedily the next measurement:

ks = arg maxj∈Ss (a
′

jM−1

i aj)

3. Update the measurement set and Ms:

Ss+1 = Ss\ks, Ks+1 = Ks∪ks, s← s+1, M−1
s =

M−1

s−1 −
M

−1

s−1
aks−1

a
′

ks−1
M

−1

s−1

1+a
′

ks−1

M
−1

s−1
a
′

ks−1

, go to step 2 if s ≤ k.

solving the sensor selection problem (9).

The elements of ai are generated as iid Gaussian random

variables N (0, 1

n
). To obtain a set of k sensors scheduled for

transmission, we solve the modified ML objective (11) with

ε = 10−3. The performance of the greedily selected sensors is

compared using the actual objective (9) which they induce.

Figure 1 shows objective obtained by the two algorithms for

different random realizations of the ai. Here we set m = 150,

n = 20, and k = 20. The objective value of the Algorithm 2

is almost always better than that of the convex optimization

algorithm. Figure 2 shows the performance comparison of

the average objective versus the dimension of x (n) for a

fixed number of sensors k = 30. The objective value is

averaged over 100 realizations of the measurement set. Figure

2 shows that, as n approaches k, Algorithm 2 outperforms

the convex optimization approach. In Figure 3, we plot the

average objective as a function of the number of sensors k
for n = 20. It can be inferred that the Algorithm 2 achieves

given value of the objective function with fewer sensors than

the convex relaxation approach. However, as the number of

sensors selected increases, both the approaches result in the

same performance.

V. APPLICATION: SENSOR SELECTION USING KALMAN

FILTER AT THE FUSION CENTER

Consider a sensor network in which fusion center selects k

sensors for transmitting the measurements of a linear dynam-

ical system. The fusion center employs Kalman filter to track

the state of the system. The system model is given by

xt+1 = Atxt + wt, yt = StHtxt + vt,

where xt ∈ Rn is the state vector, yt ∈ Rk is the measurement
vector, wt and vt are the Gaussian noises with covariance
Qt and Rt respectively. At ∈ Rn×n is the state transition
matrix and Ht ∈ Rm×n is the set of all sensors available (m)
at time t. St ∈ Rk×m is the binary sensor selection matrix
at time t whose nonzero entries extract the selected sensor
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Fig. 2: Objective value vs k, m = 150, n = 20.

measurements that are transmitted to the fusion center. Each
row of St has one and only one nonzero entry. Each column of
St can have at most one nonzero entry. The goal of the fusion
center is to design the sensor selection matrix St, so as to
minimize the filtered error covariance. Let Pt+1|t and Pt+1|t+1

be the prediction and filtered error covariance respectively at
time instant k + 1. Then

Pt+1|t = AtPt|tA
T
t + Qt, (15)

Pt+1|t+1 = (P−1

t+1|t
+ HT

t+1R−1

t+1
Zt+1Ht+1)−1 (16)

where Zt+1 = ST
t+1St+1 ∈ Rm×m is a binary diagonal

matrix. Assuming the measurements are independent across
sensors (i.e., Rt is diagonal), we have

Pt+1|t+1 = (P−1

t+1|t
+ HT

t+1R
− 1

2

t+1
Zt+1R

− 1

2

t+1
Ht+1)−1

= (P−1

t+1|t
+ CT

t+1Zt+1Ct+1)−1

= (P−1

t+1|t
+

m
X

i=1

zt+1(i)ct+1(i)c
′

t+1(i))−1, (17)

where Ct+1 = R− 1

2 Ht+1, ct+1(i) is the ith row of Ct+1,

and zt+1(i) ∈ {0, 1} are the diagonal entries of Zt+1. The
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Fig. 3: Objective value vs n, m = 150, k = 30.

objective is to choose zt+1(i) so as to minimize the error metric

Pt+1|t+1. One such criteria leads to optimization

max log det
“

P−1

t+1|t+1

”

(18)

subject to zt+1(i) ∈ {0, 1},
m

X

i=1

zt+1(i) = k.

Algorithm 3 Sensor selection for Kalman filter using greedy

algorithm

1. Initialization:

s = 1, P s
t+1|t+1

= Pt+1|t

2. Determine greedily the next measurement:

ks = arg max
j∈Ss

c
′

t+1(j)P s
t+1|t+1

ct+1(j)

3. Covariance update:

P s+1

t+1|t+1
=P s

t+1|t+1
−

P s
t+1|t+1

ct+1(ks)c
′

t+1
(ks)P s

t+1|t+1

1 + c
′

t+1
(ks)P s

t+1|t+1
ct+1(ks)

4. Update the measurement set:

Ss+1 = Ss\ks, s← s + 1, go to step 2 if s ≤ k

5. Update the prediction step after k greedy steps:

Pt+1|t+1 = P k
t+1|t+1

,

Pt+2|t+1 = At+1Pt+1|t+1AT
t+1 + Qt+1

The fusion center selects sensors for transmission at each

time instant using the above metric and then updates Pt+1|t

according to (15). The optimization problem (18) corresponds

to maximization of a monotone submodular function subject to

a uniform matroid constraint (in particular, the MAP formula-

tion (4) ) and hence we can apply the greedy algorithm to solve

(18). In particular, we augment Algorithm 2 with an additional

step (15). This is formalized as Algorithm 3. The steps of

Algorithm 3 are reminiscent of the sequential processing in

Kalman filter handling multiple measurements [7]. The step 2



in the Algorithm 3 chooses the measurement in the sequential

processing such that it is maximally aligned with direction of

the maximum error. This algorithm closely resembles the V-

Lambda filtering [10]. Note that the intermediate covariance

values P s+1

t+1|t+1
will be used for the sequential processing of

the transmitted measurements.

A. Simulation results

We compare the performance of Algorithm 3 with the ap-

proach where the sensor selection at each step of Kalman recur-

sion is obtained via convex relaxation of the objective function.

Elements of the measurement matrix Ht are generated as i.i.d

Gaussian random variables with zero mean and variance 1

n
. For

the system dynamics, we assume A = In×n and Q = 9In×n.

The observation noise variance of each measurement is uni-

formly distributed in [0.5 2], and is known at the fusion center.

The resulting root-mean-square-error (RMSE) of the estimators

is computed by averaging over 50 Monte Carlo runs, with a

time horizon T = 20 for each realization. Figure 4 shows the

performance comparison as a function of the number of sensors

selected for n = 15. Algorithm 3 performs significantly better

than the convex relaxation based algorithm, especially when

the number of selected sensors is close to n. Figure 5, shows

the RMSE performance as a function of n for a fixed number

of sensors k = 30. As n grows, the performance of the convex

relaxation based approach deteriorates much faster than that of

Algorithm 3.
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Fig. 4: Average RMSE versus the number of selected sensors

(m = 100, n = 15).

VI. CONCLUSION

In this paper, we formulated maximum-a-posteriori and

maximum-likelihood sensor selection problems as optimiza-

tions of submodular functions over uniform matroids. Rely-

ing on the existing results for optimization of submodular

functions, we proposed a greedy sensor selection algorithm

which finds a solution achieving objective within (1− 1

e
) from

the optimal one. Exploiting the structure of the problem, we

simplified the original greedy algorithm to significantly reduce

its complexity. Moreover, we considered the sensor selection
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Fig. 5: Average RMSE versus the dimension of the state vector

x (m = 100, k = 30).

problem in the context of state estimation in linear dynamical

systems via Kalman filtering. In each step of the Kalman filter

algorithm, the problem was formalized as an optimization of

a submodular function over uniform matroids and solved via

the greedy algorithm. Simulation results demonstrate that the

proposed approach outperforms competing convex relaxation

techniques, while needing smaller computational complexity.
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APPENDIX

We first show f(S) = log det
“

σ−2
X

i∈S

ziaia
′

i + Σ−1
x

”

is a

monotone submodular function2. Without a loss of generality,

we assume σ = 1.

Monotonicity: Let A = {a1, a2, . . . ak}, and so

F (A) = log det
“

Σ−1
x +

k
X

i=1

aia
′

i

”

. (19)

Introduce B = {ā1, ā2, . . . āl}. We need to show that F(A ∪
B)≥F(A), for all sets B. To see this note that

F (A ∪ B) − F (A)

= log

det
“

Σ−1
x +

k
X

i=1

aia
′

i +

l
X

i=1

āiā
′

i

”

det
“

Σ−1
x +

k
X

i=1

aia
′

i

”

= log det
“

I +
`

Σ−1
x +

k
X

i=1

aia
′

i

´−1
l

X

i=1

āiā
′

i

”

.

Therefore, we need to show that

c = log det
“

I +
`

Σ−1
x +

k
X

i=1

aia
′

i

´−1
l

X

i=1

āiā
′

i

”

≥ 0

Let M1 =
`

Σ−1
x +

k
X

i=1

aia
′

i

´−1
and M2 =

l
X

i=1

āiā
′

i. It is

easy to see M2 is positive semi definite. Hence, we can find a

matrix M3 such that M2 = M3M
′

3. Using this we can write

c = log det
“

I + M1M3M
′

3

”

= log det
“

I + M
′

3M1M3

”

,

where in obtaining the last expression we used the Sylvester’s

determinant theorem [11] (det(I + AB) = det(I + BA)).

Since M1 is positive definite, the matrix M
′

3M1M3 is positive

semidefinite. All the eigen-values of I +M
′

3M1M3 are at least

unity, and hence we obtain the desired result.

Submodularity: Here we prove that f(S) satisfies (12). Let

A = {a1, a2, . . . ak}, B = {a1, a2, . . . al}, where l ≥ k, i.e,

A ⊆ B. Choose a generic element ag /∈ B. We need to show

that

F (A ∪ ag)− F (A) ≥ F (B ∪ ag)− F (B). (20)

We can write

F (A ∪ ag) − F (A) − F (B ∪ ag) + F (B)

= log
det(M1 + aga

′

g)det(M2)

det(M2 + aga
′

g)det(M1)
,

where

M1 = Σ−1
x +

k
X

i=1

aia
′

i,

M2 = Σ−1
x +

l
X

i=1

aia
′

i = M1 +
l

X

i=k+1

aia
′

i = M1 + M3,

M3 =
l

X

i=k+1

aia
′

i

2It is to be noted that f(S) is well defined for all subsets S including
the null set.

So, we need to prove that

det(M1 + aga
′

g)det(M2)

det(M2 + aga
′

g)det(M1)
≥ 1

We have

det(M1 + aga
′

g)det(M2)

det(M2 + aga′

g)det(M1)

=
det(M1 + aga

′

g)det(M1 + M3)

det(M1 + M3 + aga′

g)det(M1)

=
det(I + M−1

1 aga
′

g)

det(I + (M1 + M3)−1aga′

g)

=
(1 + a

′

gM−1

1 ag)

(1 + a′

g(M1 + M3)−1ag)

Hence we need to show that

(1 + a
′

gM−1

1 ag)

(1 + a′

g(M1 + M3)−1ag)
≥ 1

i.e,

a
′

g

“

M−1

1 − (M1 + M3)
−1

”

ag ≥ 0

Since for invertible positive definite matrices M > N it

holds M−1 < N−1, the matrix M−1

1 − (M1 + M3)
−1 is

positive semidefinite and hence the above inequality holds. This

proves the desired result.

To complete the proof of Lemma 1 , we next discuss

complexity of Algorithm 1. At step 2 of Algorithm 1 we

evaluate the determinant of positive definite matrix. There are

O(m) such determinants to be computed. The complexity of

finding the determinant of a n×n matrix is, in general, O(n3).

When choosing k sensors, Algorithm 1 has k greedy steps and

hence its complexity is O(n3mk).


