
Sublinear Estimation of a Single Element in Sparse Linear Systems

Nitin Shyamkumar, Siddhartha Banerjee, Peter Lofgren

Abstract— We present a bidirectional algorithm for esti-
mating a single element in the solution of a linear system
Ax = b, with sublinear average-case running time guarantees
for sparse systems. Our work combines the von Neumann-Ulam
scheme for solving linear systems with recent developments in
bidirectional algorithms for estimating random-walk metrics.
In particular, given a target additive-error threshold, we show
how to combine a local dynamic-programming iteration with a
forward MCMC technique such that the resulting algorithm is
order-wise faster than each individual approach.

I. INTRODUCTION

A. Related Work

II. SOLVING LINEAR EQUATIONS VIA SERIES
APPROXIMATION

A. Basic Problem and Notation

Unless specified otherwise, we use boldface letters (e.g.
x,y) to denote vectors in Rn×1, and capital letters (e.g.
A,Q) to denote matrices in Rn×n.

Given a linear system y = Ax, where A is a positive
definite matrix, our aim is to estimate x[t] for some given
index t ∈ [n]. This can be done by directly solving for x;
however, we are interested in settings where n is very large,
and hence direct solution techniques may be impractical.

B. Approximation via the Truncated Neumann Series

One approach for approximating the solution to y = Ax
is to expand it via the Neumann series and then compute the
leading terms of the summation. In particular, if A is positive
definite, then we can find γ such that G = I − γA satisfies
ρ(G) < 1.

In particular, the Richardson method selects γ ∈
[0,min||x||2 2xTAx/(xTAATx)] [1]. Then γy = (I − (I −
γA)x.

Now let us examine this new system with z = γy and
G = I − γA. We obtain z = (I − G)x and x = Gx +
z. Since we ensure that ρ(G) < 1, therefore we can write
x in terms of the von Neumann series: x =

∑∞
k=0G

kz.
Thus to find the t component of the solution vector x, we
perform the operation 〈x, et〉 =

∑∞
k=0

〈
Gkz, et

〉
. Similar

transformations have been used in [2], [1], [3].
Solving 〈x, et〉 amounts to solving the component p`z[t] :=〈
G`z, et

〉
=
〈
z, (GT)`et

〉
and taking their sum for some

` ∈ {0, . . . , `max} where `max is a finite term truncating

N. Shyamkumar is with the Department of Computer Science,
and S. Banerjee is with the School of Operations Research
and Information Engineering, Cornell University, USA, Email:
nhs56@cornell.edu, sbanerjee@cornell.edu. P. Lofgren
is with the Department of Computer Science, Stanford University, USA,
Email: plofgren@cs.stanford.edu.

the power series. Let Q := GT ; prior work by Banerjee and
Lofgren [4] shows how to compute p`z[t] for the special case
where z is a probability vector and Q is a stochastic matrix
(i.e., with all nonnegative entries, and each row summing to
1). We now extend this result for any z and a special class
of matrices Q.

III. A BIDIRECTIONAL ALGORITHM FOR LINEAR
SYSTEMS

We now describe our algorithm for computing an estimate
p̂`z[t] for p`z[t] =

〈
z, Q`et

〉
. To do so, we first describe

two existing algorithms – a forward MCMC technique based
on the von Neumann-Ulam scheme [5], [6], and a varia-
tional method based on a natural local dynamic-programming
update, proposed by Andersen et al. [7] for computing
PageRank, and used by Lee et al. [1] in this setting. We
present these along with statements of their correctness and
running time – some of these results follow directly from
previous work (as we note in the appropriate sections),
and their proofs are included here mainly for the sake of
completeness.

Our main contribution in this work is to show how the
above two primitives can be combined into a bidirectional
algorithm for estimating p̂`z[t] for any given matrix Q. Our
algorithm follows the general structure proposed by Lofgren
et al. [8], [4] for PageRank and Markov Chain transition
probability estimation. It comprises of two distinct compo-
nents: first we use the reverse local-DP primitive to estimate
approximate values of

(
Qket

)
[i] for all steps k ∈ [`max] and

i ∈ [n]. We then use MCMC samples to reduce the error in
these estimates to get our desired accuracy.

We first introduce some notation which will help us
better describe the algorithm. Drawing parallels to the case
where Q is a stochastic matrix and z an element in the
n-dimensional simplex (as in [4]), we define a (weighted)
directed graph GQ(V, E) with states V = [n], and edges
(i, j) ∈ E if Qij 6= 0. Each edge (i, j) ∈ E has an
associated weight wij ∈ R, which we describe later. We
refer to the label for a node v ∈ V (i.e., a dimension
v ∈ [n]) as a dimension-index, and the exponent of Q as
the step-index. We also use ev denote the indicator for index
v (i.e., ev[i] = 1i=v). Finally, we use β = max{1, ||Q||∞}
to streamline our proofs, since β encodes whether a matrix is
substochastic, or must be normalized to become stochastic.

A. Solving Linear Systems via Local DP Iterations

One approach towards estimating p`z[t] is via a standard
power iteration for computing Qket. In settings where n is
large enough such that a direct power iteration is infeasible,

one can use a ‘local’ power iteration, which essentially
corresponds to a natural dynamic programming update. In-
formally, the algorithm estimates p`z[t] by starting off with
a mass of 1 on dimension-index t, and then ‘pushing’ this
mass in reverse along the edges of graph GQ.

To describe this REVERSE-LOCAL-UPDATE algorithm,
we first define a REVERSE-PUSH operation corresponding
to the DP iteration. This is directly adapted from the algo-
rithm in Andersen [7] for the personal PageRank problem
(and more generally for a stochastic matrix Q); however, it
is straightforward to show that the invariant that holds for
any matrix Q (in fact, it does not require Q to be full rank,
as we have assumed).

The REVERSE-PUSH operation is a standard dynamic
programming iteration which is used to compute an es-
timate p̂`z[t] by proceeding ‘in reverse’ from t. Essen-
tially,REVERSE-PUSH is a local power-iteration for com-
puting Q`et ; instead of performing a full power-iteration,
it adaptively exploits any sparsity in the computation. This
operation was defined in the form given below in [7], and
subsequently used as a primitive in [4], [1].

For each step-index ` ∈ {0, 1, . . . , `max}, we store two
vectors: the estimate vector q`t and the residual vector r`t . We
initialize all r`t,q

`
t, ` ∈ [`max] to 0, except for r0t , which we

set to et. Now, given any dimension-index v ∈ [n] and step-
index ` ∈ [`max], the REVERSE-PUSH operation iteratively
updates these vectors as follows:

Algorithm 1 REVERSE-PUSH(t, v, `)

Inputs: Matrix Q, estimates q`t , residuals r`t, r
`+1
t

1: return New estimates q̃`t and residuals r̃`t computed as:

q̃`t ← q`t +
〈
r`t, ev

〉
ev

r̃`t ← r`t −
〈
r`t, ev

〉
ev

r̃`+1
t ← r`+1

t +
〈
r`t, ev

〉
(Qev)

The REVERSE-PUSH iteration results in the following
critical invariant for the estimate and residual vectors:

Lemma 1: Given the initialization described above, after
any sequence of REVERSE-PUSH operations, and for any
z ∈ Rn and ` ≥ 0, the estimates {qkt } and residuals {rkt }
satisfy the following invariant:

p`z[t] =
〈
z,q`t

〉
+
∑̀
k=0

〈
z, Qkr`−kt

〉
=

〈
z,q`t +

∑̀
k=0

Qkr`−kt

〉
The above invariant was first stated in [7] for the case of

PageRank vectors. For the sake of completeness, we present
a proof below for general matrices, adapted from [8]; an
identical invariant is given in [1].

Proof: For our chosen initialization (i.e., r0t = et,
and all other estimate and residual vectors set to 0), the
invariant simplifies to p`z[t] =

〈
z, Q`et

〉
which is true by

definition. Now, assuming the invariant holds at any stage
with vectors {q`t}, {r`t}`∈[`max], and let {q̃`t}, {r̃`t}`∈[`max] be
the new vectors after executing a REVERSE-PUSH(t, v, k)

operation for any given k ∈ [`max] and z ∈ Rn. We define:

∆k
v =

(
q̃`t +

∑̀
i=0

(Qi)r̃`−it

)
−

(
q`t +

∑̀
i=0

(Qi)r`−it

)
Now to show that the invariant holds following
REVERSE-PUSH(t, v, k), it suffices to show that ∆k

v

is zero for any v ∈ V and k ∈ [`max].
We now have three cases: (i) if ` < k, then the

REVERSE-PUSH(t, v, k) operation does not affect the resid-
ual or estimate vectors {qit, rit}i<k, and hence ∆k

v = 0; (ii)
If ` = k, we have:

∆k
v =

(
q̃kt + r̃kt

)
−
(
qkt + rkt

)
= qkt +

〈
rkt , ev

〉
ev + rkt −

〈
rkt , ev

〉
ev − qkt − rkt = 0

(iii) Finally, when ` > k, we have:

∆k
v = Q`−k

(
r̃kt − rkt

)
+Q`−k−1

(
r̃k+1
t − rk+1

t

)
= −

〈
rkt , ev

〉
Q`−kev +

〈
rkt , ev

〉
Q`−k−1 (Qev) = 0

Hence we have shown that the invariant is preserved for any
sequence of reverse push operations.

The above invariant gives a natural iterative algorithm for
computing p`z[t], by performing repeated REVERSE-PUSH
operations and controlling the residual vectors rkt , and using
p̂`z[t] = 〈z,q`t〉 as the estimate. Depending on the norm
we choose to control, we can get a bound for the error
via Hölder’s inequality. In particular, controlling the infinity
norm (i.e., the maximum absolute value of the residual
vectors) to be less than some chosen δr > 0 gives us a
bound: |p`z[t]− 〈z,q`t〉| ≤ ||x||1δr max{1, ||Q||`∞} 1.

Algorithm 2 REVERSE-LOCAL-UPDATE(t, Q, `max, δr)

Inputs: Matrix Q, maximum step-index `max, target resid-
ual threshold δr

1: Initialize all residual r`t and estimate vectors q`t, ` ∈
[`max] to 0; set r0t = et

2: for ` ∈ {0, 1, 2, ...`max} do
3: while ∃v such that

∣∣r`t[v]
∣∣ > δr do

4: REVERSE-PUSH(t, v, `)
5: end while
6: end for
7: return {q`t}, {r`t}`∈[`max]

Finally, we want to bound the running time of
REVERSE-LOCAL-UPDATE(t, Q, `max, δr). It is easy to
see that in the worst case, the running time can be as much
as the `max-hop in-neighborhood of t in Q. However, for
a uniform random choice of t, we can obtain the following
bound.

Lemma 2: For any Q ∈ Rn×n and uniform random
dimension-index t ∈ [n], the expected running time of
REVERSE-LOCAL-UPDATE(t, Q, `max, δr) is

O

(
nnz(Q)

nδr
(`max + 1) max{1, ||Q||`max

∞ }
)

1This approach was used in [7], [8], [4]; an alternative is to control ||rkt ||2
giving error bounds in terms of ||x||2, which was suggested in [1].

In particular, note that if ||Q||∞ ≤ 1 and `max = O(1),
then the average running time is O(nnz(Q)

nδr
.

Proof: Let T (t) be the running time of
REVERSE-LOCAL-UPDATE(t, Q, `max, δr). Moreover, let
Q+ denote the matrix with Q+

ij = |Qij |, and T̂ (t) be the run-
ning time of REVERSE-LOCAL-UPDATE(t, Q+, `max, δr).
Then we have that for every matrix Q and every t, we
have T̂ (t) > T (t) – this follows from the fact that any
cancellation between positive and negative residuals in
REVERSE-LOCAL-UPDATE(t, Q+, `max, δr) can only
decrease the number of iterations. Also, note that under Q+,
since all residuals are positive, we have that at any time and
for any v ∈ [n], rkt [v] ≤

(
eTvQ

k
)

[t].
Now let di :=

∑
j 1{Qij 6=0}, i.e., the support of

ith row in Q, and r`t denote the residuals under
REVERSE-LOCAL-UPDATE(t, Q+, `max, δr). Finally, let
β = max{1, ||Q||∞}. From Algorithm 2, we have T̂ (t) =∑`max

`=0

∑
v∈[n] 1r`t[v]>δr

. Thus, the expected running time
over a uniform random choice of t ∈ [n] is given by

1

n

∑
t

T̂ (t) =
1

n

∑
t∈[n]

`max∑
k=0

∑
v∈[n]

1{rkt>δr}dv

=
1

n

`max∑
k=0

∑
v∈[n]

∑
t∈[n]

1{rkt>δr}dv

≤ 1

n

`max∑
k=0

∑
v∈[n]

1{(eTw(Q+)k)[t]>δr}dv

=
1

n

`max∑
k=0

∑
v∈[n]

||eTw(Q+)k||1
δr

dv

≤ 1

n

`max∑
k=0

∑
v∈[n]

||Q+||k∞
δr

dv

≤ (`max + 1)β`max
nnz(Q)

nδr

B. Solving Linear Systems via MCMC Sampling

In the previous section, we computer p`z[t] by working
backwards from t. Note that our final algorithm is inde-
pendent of z. We now present an alternate technique which
is based on a forward MCMC sampling technique called
the von Neumann-Ulam scheme. Note that in this case, the
algorithm starts from z, and computes p`z[t] for all t ∈ [n].

More generally, given any vectors a and b and
matrix Q, the von Neumann-Ulam scheme can be
used for computing

〈
a, Qkb

〉
. To understand the algo-

rithm, note that we can expand
〈
a, Qkb

〉
as the sum∑

(v0,...,vk)∈V k

(∏
j∈[k]Qvj−1vj

)
a[v0]b[vk]. Now we can

interpret this sum as an expectation over a k-step random
walk W = (V0, V1, . . . , Vk) on G, specified as follows:
• V0, the starting node for the random walk, is sampled

from σa = {|a[i]|/||a||1}i∈[n], and has an associated
weight wV0

= sign(a[V0])||a||1.

• The transition probability matrix for the walk is given
by P = {|Qij |/||Qi||1} (where ||Qi||1 is the 1-norm of
the ith row of Q).

• Each edge (i, j) ∈ E has associated weight wij =
sgn(Qij)||Qi||1.

• The ‘score’ for a walk W is the product of weights of
traversed edges, i.e.,

Skt (W) = wV0

k−1∏
i=0

wViVi+1b[Vk]

This process is summarized in Algorithm 3.

Algorithm 3 MCMC-SAMPLER(Q, k,a,b)

Inputs: Matrix Q, exponent k, vectors a and b
1: Construct transition matrix P = {|Qij |/||Qi||1} and

starting measure σa = {|a[i]|/||a||1}i∈V
2: Define node weights wV0

= sign(a[V0])||a||1 and edge
weights wV iV j = sign(QV iV j)||Qi||1

3: Construct source distribution σa with σa[i] = z[i]
||z||1

4: Sample V 0 ∼ σa, and generate a random walk W =
{V 0, V 1, . . . , V k} of length k on G using transition
probability P .

5: return Walk-score Skt (W) = wV0

∏k−1
i=0 wViVi+1b[Vk]

Recall we defined β = max{1, ||Q||∞}. Now we have the
following Lemma.

Lemma 3: MCMC-SAMPLER(Q, k,a,b) returns a walk-
score Skt (W) which satisfies:

1) EW∼σa(P)k
[
Skt (W)

]
=
〈
a, Qkb

〉
2) Skt (W) ∈ [−βk||a||1||b||∞, βk||a||1||b||∞]

Proof: We can expand EW∼σa(P)k
[
Skt (W)

]
to obtain:

EW∼σa(P)k

[
Skt (W)

]
=

∑
(V 0,...V k)∈[n]k+1

(
sign(a[V0])||a||1|a[V 0]|

||a||1

×

 ∏
j∈[0,k−1]

sign(QV jV j+1 ||QV j ||1)|QV jV j+1 |
||QV j ||1

b[V k]

=

∑
(V 0,...V k)∈[n]k+1

a[V0]

 ∏
j∈[0,k−1]

QV jV j+1

b[V k]

This last line is exactly the definition of the ma-
trix multiplication and inner product

〈
a, Qkb

〉
, hence

EW∼σa(P)k
[
Skt (W)

]
=
〈
a, Qkb

〉
Next, in order to bound the score Skt (W), recall that

Skt (W) = wV0

k−1∏
i=0

wViVi+1b[Vk]

We defined wV0
= sign(a[V0])||a||1, so trivially |wV0

| ≤
||a||1. Additionally, since wViVi+1

= sign(QV iV j)||Qi||1,
and by definition ||Qi||1 ≤ ||Q||∞. Additionally, note
from the definition |b[V k]| ≤ ||b||∞. Hence, since we are
multiplying k edge scores, we finally obtain |Skt (W)| ≤
||Q||k∞||a||1||b||∞ as stated in the lemma.

C. Bidirectional Linear System Estimator
Finally, we can present our bidirectional linear-system

estimator, that combines the REVERSE-LOCAL-UPDATE
and MCMC-SAMPLER algorithms. Intuitively, combining the
two allows us to perform sampling more effectively when
calling MCMC-SAMPLER(Q, k,a,b). Since the score ran-
dom variables are bounded by ||Q||k∞||a||1||b||∞, running
the REVERSE-LOCAL-UPDATE algorithm bounds ||b||∞
by `δr where b = `r`t , which allows MCMC-SAMPLER to
return scores with lower variance.

Algorithm 4 LINEAR-SYSTEM-ESTIMATOR
(Q, z, t, `max)

Inputs: Matrix Q, source vector z defining the system x =
Gx + z, target t, number of random walks nf , series
truncation parameter `max.

1: {r`t}, {q`t} = REVERSE-LOCAL-UPDATE(t, Q, `max, δr)

2: for l ∈ {1, 2, . . . , `max} do
3: for i ∈ [nf] do
4: k ∼ Unif [0, `]
5: S`i,t = MCMC-SAMPLER (Q, k, z, ` · r`−kt)
6: end for
7: p`z[t] =

〈
z,q`t

〉
+ 1

nf

∑nf

i=0 S
`
i,t

8: end for
9: return

∑`max

`=0 p`z[t]

Lemma 4: LINEAR-SYSTEM-ESTIMATOR computes
an unbiased estimator of p`z[t]

p`z[t] =
〈
z, Qlet

〉
=
〈
z,q`t

〉
+
∑̀
k=0

〈
z, Qkr`−kt

〉
= E

[
p̂`z[t]

]
Proof: By definition of the estimator p̂`z[t] and linearity

of the expectation operator:

E
[
p̂`z[t]

]
=
〈
z,q`t

〉
+

1

nf

nf∑
i=1

Ek∼Unif [0,l]
[
Skt
]

=
〈
z,q`t

〉
+ Ek∼Unif [0,`]

[
Skt
]

From Lemma 2, we know E
[
Skt
]

=
〈
a, Qkb

〉
when we

call MCMC-SAMPLER(Q, k,a,b), so in the linear system
estimator, we obtain:

E
[
p̂`z[t]

]
=
〈
z,q`t

〉
+ Ek∼Unif [0,`]

[〈
z, Qk(` · r`−kt)

〉]
=
〈
z,q`t

〉
+

1

`

∑̀
k=0

〈
z, Qk(l · r`−kt)

〉
=
〈
z,q`t

〉
+

l∑
k=0

〈
z, Qkr`−kt

〉
Recall from Lemma 1, that for any matrix Q and after
any sequence of reverse push operations, p`z[t] =

〈
z, Q`et

〉
obeys the invariant:

p`z[t] =
〈
z,q`t

〉
+
∑̀
k=0

〈
z, Qkr`−kt

〉

Hence E
[
p̂`z[t]

]
= p`z[t].

Theorem 1: Theorem: LINEAR-SYSTEM-ESTIMATOR
estimates 〈x, et〉 with relative accuracy ε and with probability
1− pfail in running time

O

`5maxnnz(Q)

(
ln `max

pfail

)2
n

1/3(

β`max |z|1
εδ

)4/3

Proof: We will prove this statement by first considering

the single estimator p̂`z[t] for some ` since 〈xt, et〉 =∑∞
l=0 p

`
z[t].

We will prove this statement by first considering the single
estimator p̂`z[t] for some ` since 〈xt, et〉 =

∑∞
l=0 p

`
z[t].

Consider the estimator S`t . We have already shown that
E
[
S`t,i
]

= p`z[t]−
〈
σ,q`t

〉
and computed the work to achieve

relative error ε for these estimators. Now observe:

P
[
|p̂`z[t]− p`z[t]| ≥ εp`z[t]

]
≤ P [|X − E[X]| ≥ εE[X]] ≤ pfail

By Lemma 5, the work done by MCMC-SAMPLER to achieve
relative accuracy ε with probability 1− pfail is

O
(
`2max|z|21δ2rβ2`max

ε2δ2
ln

(
`max

pfail

))
By Lemma 6, we get that the forward and reverse work

running times are equal asymptotically if we set

δr = 3

√
nnz(Q)ε2δ2

n`max|z|21β2`max ln(`max/pfail)

Substituting in this value for the forward walk work and we
obtain:

O

`5maxnnz(Q)

(
ln `max

pfail

)2
n

1/3(

β`max |z|1
εδ

)4/3

which is in fact the total running time.

Lemma 5: The work done by MCMC-SAMPLER with av-
eraged score variables 1

nf

∑nf

i=0 Si,t returns an estimator

Ê[Sli,t] with relative accuracy ε with probability 1 − pfail
in running time

O
(
`2max|z|21δ2rβ2`max

ε2δ2
ln

(
`max

pfail

))
provided that q

Proof: Let Xi = S`t,i and X =
∑n
i=1Xi. Then

Xi ∈ [−`max|z|1δrβ`max , `max|z|1δrβ`max] by Lemma 3.
Since E[Xi] ≥ δ, we let c = `max|z|1δrβ`max , a = δ and by
Lemma 6

nf ≥
2`2max|z|21δ2rβ2`max

ε2δ2
ln

(
`max

pfail

)

random walks to ensure that
P
[
|Ê[Sli,t]− E[Sli,t]| ≥ εE[Sli,t]

]
≤ pfail holds for `max

sets of p̂`z[t]. Hence, the total work in the forward estimate
to ensure P [|X − E[X]]| ≥ εE[X]] ≤ pfail for `max sets of
estimators X is

O
(
`2maxδ

2
r |z|21β2`max

ε2δ2
ln

(
`max

pfail

))

Lemma 6: Set

δr = 3

√
nnz(Q)(`max + 1)ε2δ2

n`2max|z|21β2`max−1 ln(`max/pfail)

to balance the reverse push and forward walk work.
Proof: From Lemma 2, the work from the reverse push

operation is O
(
nnz(Q)
nδr

(`max + 1)β
)

. To get the optimal
running time asymptotically, we set the forward work and
reverse work equal to each other and solve for δr:

nnz(Q)

nδr
(`max + 1)β =

`2maxδ
2
r |z|21β2`max

ε2δ2
ln

(
`max

pfail

)
Thus we obtain

δr = 3

√
nnz(Q)(`max + 1)ε2δ2

`2maxn|z|21β2`max−1 ln(`max/pfail)

For `max sufficiently large, we can replace `max+1 with just
`max and β2`max−1 with β2`max .

Lemma 7: Set `max = 1
ln ρ(G) ln

(
δ(1−ρ(G))
||z||

)
to satisfy

additive error threshold of δ.
Proof: Note that `max controls error by truncat-

ing the power series
∑∞
l=0

〈
z, Qlet

〉
. Suppose we have

this error as ∆ =
∑∞
l=0

〈
z, Qlet

〉
−
∑`max

l=0

〈
z, Qlet

〉
=〈

z, Q`max
∑∞
l=1Q

`et
〉
. Then ∆(`max) ≤ ||z||ρ(G)`max

1−ρ(G) . If
we want additive error δ (that is, δ ≤ ∆(`max)), provided
δ ≤ ||z||, we have `max ≥ 1

ln ρ(G) ln
(
δ(1−ρ(G))
||z||

)
. Recall that

ρ(G) < 1, so ln ρ(G) < 0 and the suggested value for `max

increases as δ shrinks.
Lemma 8 (Hoeffding’s Inequality): Let {Xi} be indepen-

dent random variable s.t. for all i, Xi ∈ [−c, c] a.s., and
|E[Xi]| ≥ a. Then X =

∑n
i=1Xi satisfies P[|X − E[X]| ≥

εE[X]] ≤ pfail provided that

n ≥ 4c2

ε2a2
ln

(
2

pfail

)
Proof: Let X =

∑n
i=1Xi. Since E[X] = nE[Xi],

E[X] ≥ nεa. Let t = εa.

P [|X − E[X]| ≥ εE[X]] ≤ P [|X − E[X]| ≥ nt]

= P
[∣∣∣∣ 1nX − 1

n
E[X]

∣∣∣∣ ≥ t]
Applying Hoeffding’s inequality to the rightmost term above,
we obtain

P [|X − E[X]| ≥ εE[X]] ≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)

Hence substituting the values for t and bi = c, ai = −c
gives us:

P [|X − E[X]| ≥ εE[X]] ≤ 2 exp

(
−2n2ε2a2

n(4c2)

)
Now set this upperbound to pfail to obtain the relation:

nε2a2

2c2
= ln

(
2

pfail

)
Thus, for n ≥ 2c2

ε2a2 ln
(

2
pfail

)
, we are guaranteed that

P [|X − E[X]| ≥ εE[X]] ≤ pfail.
Note that if we require the failure conditions to hold for

`max sets of X ′s, then we perform a simple union bound
which adds a `max in the 2

pfail
term.

REFERENCES

[1] C. E. Lee, A. Ozdaglar, and D. Shah, “Asynchronous approximation of
a single component of the solution to a linear system,” arXiv preprint
arXiv:1411.2647, 2014.

[2] I. Dimov, S. Maire, and J. M. Sellier, “A new walk on equations monte
carlo method for solving systems of linear algebraic equations,” Applied
Mathematical Modelling, vol. 39, no. 15, pp. 4494–4510, 2015.

[3] T. Wu and D. F. Gleich, “Multi-way monte carlo method for linear
systems,” arXiv preprint arXiv:1608.04361, 2016.

[4] S. Banerjee and P. Lofgren, “Fast bidirectional probability estimation
in markov models,” in Advances in Neural Information Processing
Systems, pp. 1423–1431, 2015.

[5] W. Wasow, “A note on the inversion of matrices by random walks,”
Mathematical Tables and Other Aids to Computation, pp. 78–81, 1952.

[6] H. Ji, M. Mascagni, and Y. Li, “Convergence analysis of markov chain
monte carlo linear solvers using ulam–von neumann algorithm,” SIAM
Journal on Numerical Analysis, vol. 51, no. 4, pp. 2107–2122, 2013.

[7] R. Andersen, C. Borgs, J. Chayes, J. Hopcraft, V. S. Mirrokni, and S.-H.
Teng, “Local computation of pagerank contributions,” in International
Workshop on Algorithms and Models for the Web-Graph, pp. 150–165,
Springer, 2007.

[8] P. Lofgren, S. Banerjee, A. Goel, and C. Seshadhri, “FAST-PPR:
Scaling personalized PageRank estimation for large graphs,” in ACM
SIGKDD’14, 2014.

	Introduction
	Related Work

	Solving Linear Equations via Series Approximation
	Basic Problem and Notation
	Approximation via the Truncated Neumann Series

	A Bidirectional Algorithm for Linear Systems
	Solving Linear Systems via Local DP Iterations
	Solving Linear Systems via MCMC Sampling
	Bidirectional Linear System Estimator

	References

